Loading…

Maximal optimal benefits of distributed generation using genetic algorithms

Recently, the distributed power generation (DG) takes more attention, because of the constraints on the traditional power generation besides the great development in the DG technologies. To accommodate this new type of generation, the existing network should be utilized and developed in an optimal m...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research 2010-07, Vol.80 (7), p.869-877
Main Authors: Abou El-Ela, A.A., Allam, S.M., Shatla, M.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, the distributed power generation (DG) takes more attention, because of the constraints on the traditional power generation besides the great development in the DG technologies. To accommodate this new type of generation, the existing network should be utilized and developed in an optimal manner. This paper presents an optimal proposed approach (OPA) to determine the optimal sitting and sizing of DG with multi-system constraints to achieve a single or multi-objectives using genetic algorithm (GA). The linear programming (LP) is used not only to confirm the optimization results obtained by GA but also to investigate the influences of varying ratings and locations of DG on the objective functions. A real section of the West Delta sub-transmission network, as a part of Egypt network, is used to test the capability of the OPA. The results demonstrate that the proper sitting and sizing of DG are important to improve the voltage profile, increase the spinning reserve, reduce the power flows in critical lines and reduce the system power losses.
ISSN:0378-7796
1873-2046
DOI:10.1016/j.epsr.2009.12.021