Loading…

Facile synthesis of hierarchical flower-like NiMoO4-CoMoO4 nanosheet arrays on nickel foam as an efficient electrode for high rate hybrid supercapacitors

•Flower-like NiMoO4CoMoO4 nanosheet arrays (NSAs) are grown on Ni foam using facile chemical bath deposition route.•NiMoO4CoMoO4 NSAs used as a battery-type material for supercapacitor applications.•Unique NiMoO4CoMoO4 NSAs are favourable for rapid ion and electron transfer.•NiMoO4CoMoO4 NSAs electr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of energy storage 2020-08, Vol.30, p.101550, Article 101550
Main Authors: Gopi, Chandu V.V. Muralee, Sambasivam, Sangaraju, Raghavendra, Kummara Venkata Guru, Vinodh, Rajangam, Obaidat, Ihab M, Kim, Hee-Je
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Flower-like NiMoO4CoMoO4 nanosheet arrays (NSAs) are grown on Ni foam using facile chemical bath deposition route.•NiMoO4CoMoO4 NSAs used as a battery-type material for supercapacitor applications.•Unique NiMoO4CoMoO4 NSAs are favourable for rapid ion and electron transfer.•NiMoO4CoMoO4 NSAs electrode exhibit the superior electrochemical properties than bare NiMoO4 and CoMoO4.•Hybrid supercapacitor (NiMoO4CoMoO4 NSAs//G-ink) delivers the high specific energy, specific power and long-term cycling stability. Binder-free hierarchical flower-like NiMoO4CoMoO4 nanosheet arrays (NSAs) have been successfully grown on nickel (Ni) foam surface via a facile one-step chemical bath deposition method followed by calcination treatment. The as-prepared NiMoO4CoMoO4 NSAs electrode material has been effectively used as a battery-type material for supercapacitor applications. Surface morphological and structural studies reveal that the as-fabricated NiMoO4CoMoO4 electrode exhibits a flower-like heterostructures constructed with interconnected nanosheet arrays. In a three-electrode system, the potential plateaus from the cyclic voltammetry and galvanostatic charge–discharge measurements indicate that the obtained NiMoO4CoMoO4 NSAs electrode exhibits Faradic battery-type redox behaviour, which is different form the profiles of carbon-based materials. As a battery-type material, NiMoO4CoMoO4 NSAs electrode delivers a remarkable specific capacity of (~236.86 mA h g−1 at 2 A g−1), excellent rate capability (~92.44% retains even at 10 A g−1), and superior cycling stability (~97.19% at 6 A g−1 over 5000 cycles), which are much higher than those of the bare NiMoO4 and CoMoO4 electrodes. The superior electrochemical properties of the NiMoO4CoMoO4 composite material are due to the synergetic effect from CoMoO4 and NiMoO4 and to the fact that the hierarchical nanosheet arrays provide abundant electroactive sites for rapid redox reactions. Additionally, hybrid supercapacitor (HSC) has been assembled using NiMoO4CoMoO4 NSAs/Ni foam as the positive electrode and graphene-ink/Ni foam as the negative electrode. It is found to exhibit a good cycling stability and a high specific energy of 27.58 Wh kg−1 at a specific power of 636.05 W kg−1. Thereby, these electrochemical performances suggest that the as-fabricated NiMoO4CoMoO4 NSAs are promising candidates for electrodes in high-performance supercapacitors. [Display omitted]
ISSN:2352-152X
2352-1538
DOI:10.1016/j.est.2020.101550