Loading…
Microwave-assisted fabrication of high-performance supercapacitors based on electrodes composed of cobalt oxide decorated with reduced graphene oxide and carbon dots
•Microwave-assisted cobalt oxide (Co3O4) based nanocomposite electrodes doped with carbon dots and reduced graphene oxide.•The carbon dot containing electrodes enables the highest specific capacitance of 936 Fg−1 at 0.5 Ag−1 current density.•The cyclic stability of the electrodes is reasonably high,...
Saved in:
Published in: | Journal of energy storage 2022-05, Vol.49, p.104103, Article 104103 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Microwave-assisted cobalt oxide (Co3O4) based nanocomposite electrodes doped with carbon dots and reduced graphene oxide.•The carbon dot containing electrodes enables the highest specific capacitance of 936 Fg−1 at 0.5 Ag−1 current density.•The cyclic stability of the electrodes is reasonably high, and the electrodes retain 93%, 87%, and 88% of their initial capacitance after 10,000 cycles for Co3O4, Co3O4@RGO, and Co3O4@RGO@CDs.•The optimized Co3O4@RGO@CDs electrodes were used to fabricate a symmetric supercapacitor that exhibits high specific capacitance (126 Fg−1 0.25 Ag−1) and long cycle life (%81 retention after 10,000 cycles).•The fabricated supercapacitor has energy density of 17.5 Wh kg−1 and power density of 2522 W kg−1.
This study presents microwave-assisted preparation of cobalt oxide (Co3O4) based nanocomposite electrodes doped with carbon dots and reduced graphene oxide. The calcination of the precursors at 400 °C for 2 h results in nanocomposites. A three-electrode cell in 2M KOH solution is used for the electrochemical measurements. The carbon dot containing electrodes enables the highest specific capacitance of 936 Fg−1 at 0.5 Ag−1 current density. Specific capacitances of pure Co3O4, and Co3O4@RGO electrodes are 448 Fg−1 and 482 Fg−1 at 0.5 Ag−1, with good rate capability even at 10 Ag−1, respectively. The cyclic stability of the electrodes is reasonably high and the electrodes retain 93%, 87%, and 88% of their initial capacitance after 10,000 cycles for Co3O4, Co3O4@RGO, and Co3O4@RGO@CDs, respectively. The optimized Co3O4@RGO@CDs electrodes were used to fabricate a symmetric supercapacitor that exhibits high specific capacitance (126 Fg−1 0.25 Ag−1) and long cycle life (%81 retention after 10,000 cycles). The fabricated supercapacitor has energy density of 17.5 Wh kg−1 and power density of 2522 W kg−1. The outstanding results demonstrate the promise of carbon dots doped transition metal oxides-based nanoparticles as promising electrodes for supercapacitor applications.
[Display omitted] |
---|---|
ISSN: | 2352-152X 2352-1538 |
DOI: | 10.1016/j.est.2022.104103 |