Loading…
Pinacol hydrate as a novel thermal energy storage medium for electric vehicles
Movement towards the gradual replacement of gasoline combustion vehicles to electrical vehicles is occurring on a global scale. Heat management of lithium-ion batteries (LIB) is necessary for long-term operation and safety of the power sources of electrical vehicles. This research suggests pinacol h...
Saved in:
Published in: | Journal of energy storage 2022-07, Vol.51, p.104404, Article 104404 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Movement towards the gradual replacement of gasoline combustion vehicles to electrical vehicles is occurring on a global scale. Heat management of lithium-ion batteries (LIB) is necessary for long-term operation and safety of the power sources of electrical vehicles. This research suggests pinacol hydrate as a phase change material (PCM) for use as an alternative cooling media for LIB. The pinacol hydrate crystallizes under atmospheric pressure and temperatures around 45 °C, which are compatible with LIB operating conditions. Its dissociation enthalpy can control the excessive heating of the battery. The equilibrium phase transition temperature of pinacol hydrate was reported about a decade ago, but its thermal storage capacity has not been reported yet and updated quantitative measurements are required. Hence, in this study the equilibrium temperatures and dissociation enthalpies are experimentally measured for pinacol aqueous solutions prepared with mass fractions between 0.40 and 0.85. The maximum thermal storage capacity is measured by differential scanning calorimetry to be 301.9 kJ/kg for mass fraction of 0.50 which is compatible with operating conditions of up to 45.6 °C. A minimization of reservoir tank mass by 35% of that needed for conventional technologies may be possible by using pinacol hydrate.
[Display omitted]
•Dissociation enthalpies and equilibrium temperatures of pinacol hydrate.•The potential of pinacol for novel thermal energy storage medium for electric vehicle.•Two-different crystal structures and thermodynamic properties of pinacol hydrate.•Connection between mass fraction of pinacol and thermodynamic properties. |
---|---|
ISSN: | 2352-152X 2352-1538 |
DOI: | 10.1016/j.est.2022.104404 |