Loading…

Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization

This paper presents an efficient constraint-handling technique (CHT) for metaheuristic algorithms in the size and shape optimization of truss structures. During the search process, the proposed CHT utilizes an improved Deb rule to filter redundant structural analyses and maps the candidate designs o...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2023-03, Vol.213, p.118999, Article 118999
Main Authors: Cao, Hongyou, Sun, Wen, Chen, Yupeng, Kong, Fan, Feng, Liuyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93
cites cdi_FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93
container_end_page
container_issue
container_start_page 118999
container_title Expert systems with applications
container_volume 213
creator Cao, Hongyou
Sun, Wen
Chen, Yupeng
Kong, Fan
Feng, Liuyang
description This paper presents an efficient constraint-handling technique (CHT) for metaheuristic algorithms in the size and shape optimization of truss structures. During the search process, the proposed CHT utilizes an improved Deb rule to filter redundant structural analyses and maps the candidate designs onto the feasible boundary for structural optimization to improve its search ability and stability based on the mapping strategy. The performance of the newly developed Manta Ray Foraging Optimization (MRFO) algorithm using the proposed CHT in structural optimization was also examined. Five truss optimization problems are used to examine the efficiency of the hybrid CHT compared with the improved Deb rule, the EDP method, and the mapping strategy. Four widely used metaheuristic algorithms, including HS, PSO, TLBO, and CS, have also been used to evaluate the performance of the MRFO in structural optimization. Numerical results demonstrate that the hybrid CHT can markedly improve both the search capacity and computational efficiency of metaheuristic algorithms. The MRFO does not show obvious weakness compared with existing algorithms in structural optimization. A comparison analysis also shows that the performances of the hybrid CHT vary across optimization algorithms.
doi_str_mv 10.1016/j.eswa.2022.118999
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2022_118999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422020176</els_id><sourcerecordid>S0957417422020176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkx-gYTrxKljiQVV_EmVGIDZ8l8aV41TbBeU8vI0LQMT0x3O-Y6uPoSuCeQEyOxmldv4JfMCiiInpOacn6AJqVmZzRgvT9EEeMUyShg9RxcxrgAIA2AT9P3qds4vsfQGx1ZuLO43yXVuJ5PrPe4bnMI2Rmy7zbofDk3cDio4g3XvYwrS-ZS1e3w9hsnq1ruPrT0MdtIniYMccNMHuRwLf9cv0Vkj19Fe_d4pen-4f5s_ZYuXx-f53SLTJUDKmoJySRSpjeFGMV5LXVUUCHBQtCo58NICU0rVZd0QZakyUBOqZwXRVGpeTlFx3NWhjzHYRmyC62QYBAEx6hMrMeoToz5x1LeHbo-Q3X_26WwQUTvrtTUuWJ2E6d1_-A_YxHxx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization</title><source>ScienceDirect Freedom Collection</source><creator>Cao, Hongyou ; Sun, Wen ; Chen, Yupeng ; Kong, Fan ; Feng, Liuyang</creator><creatorcontrib>Cao, Hongyou ; Sun, Wen ; Chen, Yupeng ; Kong, Fan ; Feng, Liuyang</creatorcontrib><description>This paper presents an efficient constraint-handling technique (CHT) for metaheuristic algorithms in the size and shape optimization of truss structures. During the search process, the proposed CHT utilizes an improved Deb rule to filter redundant structural analyses and maps the candidate designs onto the feasible boundary for structural optimization to improve its search ability and stability based on the mapping strategy. The performance of the newly developed Manta Ray Foraging Optimization (MRFO) algorithm using the proposed CHT in structural optimization was also examined. Five truss optimization problems are used to examine the efficiency of the hybrid CHT compared with the improved Deb rule, the EDP method, and the mapping strategy. Four widely used metaheuristic algorithms, including HS, PSO, TLBO, and CS, have also been used to evaluate the performance of the MRFO in structural optimization. Numerical results demonstrate that the hybrid CHT can markedly improve both the search capacity and computational efficiency of metaheuristic algorithms. The MRFO does not show obvious weakness compared with existing algorithms in structural optimization. A comparison analysis also shows that the performances of the hybrid CHT vary across optimization algorithms.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.118999</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational efficiency ; Constraint-handling technique ; Manta ray foraging optimization ; Structural optimization</subject><ispartof>Expert systems with applications, 2023-03, Vol.213, p.118999, Article 118999</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93</citedby><cites>FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cao, Hongyou</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Chen, Yupeng</creatorcontrib><creatorcontrib>Kong, Fan</creatorcontrib><creatorcontrib>Feng, Liuyang</creatorcontrib><title>Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization</title><title>Expert systems with applications</title><description>This paper presents an efficient constraint-handling technique (CHT) for metaheuristic algorithms in the size and shape optimization of truss structures. During the search process, the proposed CHT utilizes an improved Deb rule to filter redundant structural analyses and maps the candidate designs onto the feasible boundary for structural optimization to improve its search ability and stability based on the mapping strategy. The performance of the newly developed Manta Ray Foraging Optimization (MRFO) algorithm using the proposed CHT in structural optimization was also examined. Five truss optimization problems are used to examine the efficiency of the hybrid CHT compared with the improved Deb rule, the EDP method, and the mapping strategy. Four widely used metaheuristic algorithms, including HS, PSO, TLBO, and CS, have also been used to evaluate the performance of the MRFO in structural optimization. Numerical results demonstrate that the hybrid CHT can markedly improve both the search capacity and computational efficiency of metaheuristic algorithms. The MRFO does not show obvious weakness compared with existing algorithms in structural optimization. A comparison analysis also shows that the performances of the hybrid CHT vary across optimization algorithms.</description><subject>Computational efficiency</subject><subject>Constraint-handling technique</subject><subject>Manta ray foraging optimization</subject><subject>Structural optimization</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkx-gYTrxKljiQVV_EmVGIDZ8l8aV41TbBeU8vI0LQMT0x3O-Y6uPoSuCeQEyOxmldv4JfMCiiInpOacn6AJqVmZzRgvT9EEeMUyShg9RxcxrgAIA2AT9P3qds4vsfQGx1ZuLO43yXVuJ5PrPe4bnMI2Rmy7zbofDk3cDio4g3XvYwrS-ZS1e3w9hsnq1ruPrT0MdtIniYMccNMHuRwLf9cv0Vkj19Fe_d4pen-4f5s_ZYuXx-f53SLTJUDKmoJySRSpjeFGMV5LXVUUCHBQtCo58NICU0rVZd0QZakyUBOqZwXRVGpeTlFx3NWhjzHYRmyC62QYBAEx6hMrMeoToz5x1LeHbo-Q3X_26WwQUTvrtTUuWJ2E6d1_-A_YxHxx</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Cao, Hongyou</creator><creator>Sun, Wen</creator><creator>Chen, Yupeng</creator><creator>Kong, Fan</creator><creator>Feng, Liuyang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization</title><author>Cao, Hongyou ; Sun, Wen ; Chen, Yupeng ; Kong, Fan ; Feng, Liuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational efficiency</topic><topic>Constraint-handling technique</topic><topic>Manta ray foraging optimization</topic><topic>Structural optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Hongyou</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Chen, Yupeng</creatorcontrib><creatorcontrib>Kong, Fan</creatorcontrib><creatorcontrib>Feng, Liuyang</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Hongyou</au><au>Sun, Wen</au><au>Chen, Yupeng</au><au>Kong, Fan</au><au>Feng, Liuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization</atitle><jtitle>Expert systems with applications</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>213</volume><spage>118999</spage><pages>118999-</pages><artnum>118999</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>This paper presents an efficient constraint-handling technique (CHT) for metaheuristic algorithms in the size and shape optimization of truss structures. During the search process, the proposed CHT utilizes an improved Deb rule to filter redundant structural analyses and maps the candidate designs onto the feasible boundary for structural optimization to improve its search ability and stability based on the mapping strategy. The performance of the newly developed Manta Ray Foraging Optimization (MRFO) algorithm using the proposed CHT in structural optimization was also examined. Five truss optimization problems are used to examine the efficiency of the hybrid CHT compared with the improved Deb rule, the EDP method, and the mapping strategy. Four widely used metaheuristic algorithms, including HS, PSO, TLBO, and CS, have also been used to evaluate the performance of the MRFO in structural optimization. Numerical results demonstrate that the hybrid CHT can markedly improve both the search capacity and computational efficiency of metaheuristic algorithms. The MRFO does not show obvious weakness compared with existing algorithms in structural optimization. A comparison analysis also shows that the performances of the hybrid CHT vary across optimization algorithms.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.118999</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2023-03, Vol.213, p.118999, Article 118999
issn 0957-4174
1873-6793
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2022_118999
source ScienceDirect Freedom Collection
subjects Computational efficiency
Constraint-handling technique
Manta ray foraging optimization
Structural optimization
title Sizing and shape optimization of truss employing a hybrid constraint-handling technique and manta ray foraging optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sizing%20and%20shape%20optimization%20of%20truss%20employing%20a%20hybrid%20constraint-handling%20technique%20and%20manta%20ray%20foraging%20optimization&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cao,%20Hongyou&rft.date=2023-03-01&rft.volume=213&rft.spage=118999&rft.pages=118999-&rft.artnum=118999&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.118999&rft_dat=%3Celsevier_cross%3ES0957417422020176%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-f249a1b18dd9db798ac55401090b4539093e07bbb838f1be4bd0814c621c4ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true