Loading…

A lightweight face-assisted object detection model for welding helmet use

Automatic Welding Helmet Use (WHU) detection technology is of great significance for the safety management of construction site, then, this paper proposes a lightweight face-assisted model using YOLOv5s for the detection of WHU (WHU-YOLO). First, the Ghost module is introduced into YOLOv5s to optimi...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2023-07, Vol.221, p.119764, Article 119764
Main Authors: Chen, Weiming, Li, Changfan, Guo, Hailin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593
cites cdi_FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593
container_end_page
container_issue
container_start_page 119764
container_title Expert systems with applications
container_volume 221
creator Chen, Weiming
Li, Changfan
Guo, Hailin
description Automatic Welding Helmet Use (WHU) detection technology is of great significance for the safety management of construction site, then, this paper proposes a lightweight face-assisted model using YOLOv5s for the detection of WHU (WHU-YOLO). First, the Ghost module is introduced into YOLOv5s to optimize feature extraction parts of backbone and neck, reducing model complexity. Then, the neck of YOLOv5s is reconstructed based on Bi-directional Feature Pyramid Network (Bi-FPN). The experimental results implemented on established Welding helmet and Human face Detection (WHD) dataset indicate that the false positives have been greatly decreased with the assistance of face data and the mean average precision (mAP) reaches 83.65%. Meanwhile, under the environment of NVIDIA GeForce GTX 1070 and 640 × 640 input size, WHU-YOLO with inference time up to 5.7 ms achieves model compression with 35.7%, 34.4% and 30.1% reductions in parameters, weight size and Floating Point Operations (FLOPs) compared with YOLOv5s, respectively, which has no decline on detection performance.
doi_str_mv 10.1016/j.eswa.2023.119764
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2023_119764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417423002658</els_id><sourcerecordid>S0957417423002658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8AwkeO7ETiU1V8ahUiQ2sLcczaR2lDbIDFX9PorJmc-_qjOYexu5B5CBAP3Q5pZPLpZAqB6iNLi7YAiqjMm1qdckWoi5NVoAprtlNSp0QYIQwC7ZZ8T7s9uOJ5uSt85S5lEIaCfnQdORHjjROFYYjPwxIPW-HyE_UYzju-J76A438K9Etu2pdn-jur5fs4_npff2abd9eNuvVNvNKiDFrHSIaWYNUxhiSDeqKdKWKBistFdYSCJ1RvgEEaisohS80FmVtlGvKWi2ZPN_1cUgpUms_Yzi4-GNB2FmG7ewsw84y7FnGBD2eIZo--w4UbfKBjp4wxGmbxSH8h_8C4-doxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A lightweight face-assisted object detection model for welding helmet use</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Weiming ; Li, Changfan ; Guo, Hailin</creator><creatorcontrib>Chen, Weiming ; Li, Changfan ; Guo, Hailin</creatorcontrib><description>Automatic Welding Helmet Use (WHU) detection technology is of great significance for the safety management of construction site, then, this paper proposes a lightweight face-assisted model using YOLOv5s for the detection of WHU (WHU-YOLO). First, the Ghost module is introduced into YOLOv5s to optimize feature extraction parts of backbone and neck, reducing model complexity. Then, the neck of YOLOv5s is reconstructed based on Bi-directional Feature Pyramid Network (Bi-FPN). The experimental results implemented on established Welding helmet and Human face Detection (WHD) dataset indicate that the false positives have been greatly decreased with the assistance of face data and the mean average precision (mAP) reaches 83.65%. Meanwhile, under the environment of NVIDIA GeForce GTX 1070 and 640 × 640 input size, WHU-YOLO with inference time up to 5.7 ms achieves model compression with 35.7%, 34.4% and 30.1% reductions in parameters, weight size and Floating Point Operations (FLOPs) compared with YOLOv5s, respectively, which has no decline on detection performance.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2023.119764</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer vision ; Deep learning ; Helmet detection ; Object detection ; Welding helmet ; YOLOv5</subject><ispartof>Expert systems with applications, 2023-07, Vol.221, p.119764, Article 119764</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593</citedby><cites>FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593</cites><orcidid>0000-0002-2660-5492 ; 0000-0001-9048-9054 ; 0000-0003-1089-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Weiming</creatorcontrib><creatorcontrib>Li, Changfan</creatorcontrib><creatorcontrib>Guo, Hailin</creatorcontrib><title>A lightweight face-assisted object detection model for welding helmet use</title><title>Expert systems with applications</title><description>Automatic Welding Helmet Use (WHU) detection technology is of great significance for the safety management of construction site, then, this paper proposes a lightweight face-assisted model using YOLOv5s for the detection of WHU (WHU-YOLO). First, the Ghost module is introduced into YOLOv5s to optimize feature extraction parts of backbone and neck, reducing model complexity. Then, the neck of YOLOv5s is reconstructed based on Bi-directional Feature Pyramid Network (Bi-FPN). The experimental results implemented on established Welding helmet and Human face Detection (WHD) dataset indicate that the false positives have been greatly decreased with the assistance of face data and the mean average precision (mAP) reaches 83.65%. Meanwhile, under the environment of NVIDIA GeForce GTX 1070 and 640 × 640 input size, WHU-YOLO with inference time up to 5.7 ms achieves model compression with 35.7%, 34.4% and 30.1% reductions in parameters, weight size and Floating Point Operations (FLOPs) compared with YOLOv5s, respectively, which has no decline on detection performance.</description><subject>Computer vision</subject><subject>Deep learning</subject><subject>Helmet detection</subject><subject>Object detection</subject><subject>Welding helmet</subject><subject>YOLOv5</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8AwkeO7ETiU1V8ahUiQ2sLcczaR2lDbIDFX9PorJmc-_qjOYexu5B5CBAP3Q5pZPLpZAqB6iNLi7YAiqjMm1qdckWoi5NVoAprtlNSp0QYIQwC7ZZ8T7s9uOJ5uSt85S5lEIaCfnQdORHjjROFYYjPwxIPW-HyE_UYzju-J76A438K9Etu2pdn-jur5fs4_npff2abd9eNuvVNvNKiDFrHSIaWYNUxhiSDeqKdKWKBistFdYSCJ1RvgEEaisohS80FmVtlGvKWi2ZPN_1cUgpUms_Yzi4-GNB2FmG7ewsw84y7FnGBD2eIZo--w4UbfKBjp4wxGmbxSH8h_8C4-doxQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Weiming</creator><creator>Li, Changfan</creator><creator>Guo, Hailin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2660-5492</orcidid><orcidid>https://orcid.org/0000-0001-9048-9054</orcidid><orcidid>https://orcid.org/0000-0003-1089-2703</orcidid></search><sort><creationdate>20230701</creationdate><title>A lightweight face-assisted object detection model for welding helmet use</title><author>Chen, Weiming ; Li, Changfan ; Guo, Hailin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Deep learning</topic><topic>Helmet detection</topic><topic>Object detection</topic><topic>Welding helmet</topic><topic>YOLOv5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weiming</creatorcontrib><creatorcontrib>Li, Changfan</creatorcontrib><creatorcontrib>Guo, Hailin</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Weiming</au><au>Li, Changfan</au><au>Guo, Hailin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lightweight face-assisted object detection model for welding helmet use</atitle><jtitle>Expert systems with applications</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>221</volume><spage>119764</spage><pages>119764-</pages><artnum>119764</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Automatic Welding Helmet Use (WHU) detection technology is of great significance for the safety management of construction site, then, this paper proposes a lightweight face-assisted model using YOLOv5s for the detection of WHU (WHU-YOLO). First, the Ghost module is introduced into YOLOv5s to optimize feature extraction parts of backbone and neck, reducing model complexity. Then, the neck of YOLOv5s is reconstructed based on Bi-directional Feature Pyramid Network (Bi-FPN). The experimental results implemented on established Welding helmet and Human face Detection (WHD) dataset indicate that the false positives have been greatly decreased with the assistance of face data and the mean average precision (mAP) reaches 83.65%. Meanwhile, under the environment of NVIDIA GeForce GTX 1070 and 640 × 640 input size, WHU-YOLO with inference time up to 5.7 ms achieves model compression with 35.7%, 34.4% and 30.1% reductions in parameters, weight size and Floating Point Operations (FLOPs) compared with YOLOv5s, respectively, which has no decline on detection performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2023.119764</doi><orcidid>https://orcid.org/0000-0002-2660-5492</orcidid><orcidid>https://orcid.org/0000-0001-9048-9054</orcidid><orcidid>https://orcid.org/0000-0003-1089-2703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2023-07, Vol.221, p.119764, Article 119764
issn 0957-4174
1873-6793
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2023_119764
source ScienceDirect Freedom Collection 2022-2024
subjects Computer vision
Deep learning
Helmet detection
Object detection
Welding helmet
YOLOv5
title A lightweight face-assisted object detection model for welding helmet use
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lightweight%20face-assisted%20object%20detection%20model%20for%20welding%20helmet%20use&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Chen,%20Weiming&rft.date=2023-07-01&rft.volume=221&rft.spage=119764&rft.pages=119764-&rft.artnum=119764&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2023.119764&rft_dat=%3Celsevier_cross%3ES0957417423002658%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-faddd729123777e2bd68e6834bd8623d921eda73cb1d1ef8150c46d45973ab593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true