Loading…

Fuzzy optimisation based cricket talent identification

In this study, we proposed a cricket talent identification model based on fuzzy optimization that employs the fuzzy analytical hierarchy process (FAHP) and particle swarm optimization (PSO). To evaluate the performance of the model, we used a primary dataset (n = 56) collected from four different sc...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-03, Vol.237, p.121573, Article 121573
Main Authors: Jeelani Khan, Naveed, Ahamad, Gulfam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-5146b365c1135e22326464661f74259e9d2d28b233e7142505b3c3b07fd808613
container_end_page
container_issue
container_start_page 121573
container_title Expert systems with applications
container_volume 237
creator Jeelani Khan, Naveed
Ahamad, Gulfam
description In this study, we proposed a cricket talent identification model based on fuzzy optimization that employs the fuzzy analytical hierarchy process (FAHP) and particle swarm optimization (PSO). To evaluate the performance of the model, we used a primary dataset (n = 56) collected from four different schools in J&K UT, India. Our model demonstrated high accuracy, precision, and recall with an accuracy of 92.8%, precision of 96%, and recall of 88%. The model also achieved a low miss rate of 11% and an F1-score of 92.3%. To the best of our knowledge, this is the first attempt to identify cricket talent using this methodology, which overcomes many limitations of conventional AHP-based models. By deriving an exact priority vector from the fuzzy comparison matrix for the criteria, our model eliminates the need for further procedures of defuzzification, making it more efficient and accurate. A comparative analysis of results gained from using Gaussian fuzzy numbers is also provided. Our study demonstrates the feasibility and potential of using fuzzy optimization techniques for cricket talent identification.
doi_str_mv 10.1016/j.eswa.2023.121573
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2023_121573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417423020754</els_id><sourcerecordid>S0957417423020754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-5146b365c1135e22326464661f74259e9d2d28b233e7142505b3c3b07fd808613</originalsourceid><addsrcrecordid>eNp9j8FKxDAQhoMoWFdfwFNfoDWTNEkLXmRxVVjwoueQJlNI3W2XJCq7T29rPcvADPzMN8xHyC3QEijIu77E-G1KRhkvgYFQ_IxkUCteSNXwc5LRRqiiAlVdkqsYe0pBUaoyIjefp9MxHw_J7300yY9D3pqILrfB2w9MeTI7HFLu3dR95-3vzjW56Mwu4s3fXJH3zePb-rnYvj69rB-2hWUCUiGgki2XwgJwgYxxJqupJHSqYqLBxjHH6pZxjgqmhIqWW95S1bma1hL4irDlrg1jjAE7fQh-b8JRA9Wzue71bK5nc72YT9D9AuH02ZfHoKP1OFh0PqBN2o3-P_wHgTxgYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy optimisation based cricket talent identification</title><source>Elsevier</source><creator>Jeelani Khan, Naveed ; Ahamad, Gulfam</creator><creatorcontrib>Jeelani Khan, Naveed ; Ahamad, Gulfam</creatorcontrib><description>In this study, we proposed a cricket talent identification model based on fuzzy optimization that employs the fuzzy analytical hierarchy process (FAHP) and particle swarm optimization (PSO). To evaluate the performance of the model, we used a primary dataset (n = 56) collected from four different schools in J&amp;K UT, India. Our model demonstrated high accuracy, precision, and recall with an accuracy of 92.8%, precision of 96%, and recall of 88%. The model also achieved a low miss rate of 11% and an F1-score of 92.3%. To the best of our knowledge, this is the first attempt to identify cricket talent using this methodology, which overcomes many limitations of conventional AHP-based models. By deriving an exact priority vector from the fuzzy comparison matrix for the criteria, our model eliminates the need for further procedures of defuzzification, making it more efficient and accurate. A comparative analysis of results gained from using Gaussian fuzzy numbers is also provided. Our study demonstrates the feasibility and potential of using fuzzy optimization techniques for cricket talent identification.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2023.121573</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cricket ; Fuzzy analytical hierarchy process ; Fuzzy optimisation ; Multicriteria Decision Making (MCDM) ; Talent identification</subject><ispartof>Expert systems with applications, 2024-03, Vol.237, p.121573, Article 121573</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-5146b365c1135e22326464661f74259e9d2d28b233e7142505b3c3b07fd808613</cites><orcidid>0000-0001-5315-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jeelani Khan, Naveed</creatorcontrib><creatorcontrib>Ahamad, Gulfam</creatorcontrib><title>Fuzzy optimisation based cricket talent identification</title><title>Expert systems with applications</title><description>In this study, we proposed a cricket talent identification model based on fuzzy optimization that employs the fuzzy analytical hierarchy process (FAHP) and particle swarm optimization (PSO). To evaluate the performance of the model, we used a primary dataset (n = 56) collected from four different schools in J&amp;K UT, India. Our model demonstrated high accuracy, precision, and recall with an accuracy of 92.8%, precision of 96%, and recall of 88%. The model also achieved a low miss rate of 11% and an F1-score of 92.3%. To the best of our knowledge, this is the first attempt to identify cricket talent using this methodology, which overcomes many limitations of conventional AHP-based models. By deriving an exact priority vector from the fuzzy comparison matrix for the criteria, our model eliminates the need for further procedures of defuzzification, making it more efficient and accurate. A comparative analysis of results gained from using Gaussian fuzzy numbers is also provided. Our study demonstrates the feasibility and potential of using fuzzy optimization techniques for cricket talent identification.</description><subject>Cricket</subject><subject>Fuzzy analytical hierarchy process</subject><subject>Fuzzy optimisation</subject><subject>Multicriteria Decision Making (MCDM)</subject><subject>Talent identification</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAQhoMoWFdfwFNfoDWTNEkLXmRxVVjwoueQJlNI3W2XJCq7T29rPcvADPzMN8xHyC3QEijIu77E-G1KRhkvgYFQ_IxkUCteSNXwc5LRRqiiAlVdkqsYe0pBUaoyIjefp9MxHw_J7300yY9D3pqILrfB2w9MeTI7HFLu3dR95-3vzjW56Mwu4s3fXJH3zePb-rnYvj69rB-2hWUCUiGgki2XwgJwgYxxJqupJHSqYqLBxjHH6pZxjgqmhIqWW95S1bma1hL4irDlrg1jjAE7fQh-b8JRA9Wzue71bK5nc72YT9D9AuH02ZfHoKP1OFh0PqBN2o3-P_wHgTxgYA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jeelani Khan, Naveed</creator><creator>Ahamad, Gulfam</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5315-9777</orcidid></search><sort><creationdate>20240301</creationdate><title>Fuzzy optimisation based cricket talent identification</title><author>Jeelani Khan, Naveed ; Ahamad, Gulfam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-5146b365c1135e22326464661f74259e9d2d28b233e7142505b3c3b07fd808613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cricket</topic><topic>Fuzzy analytical hierarchy process</topic><topic>Fuzzy optimisation</topic><topic>Multicriteria Decision Making (MCDM)</topic><topic>Talent identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeelani Khan, Naveed</creatorcontrib><creatorcontrib>Ahamad, Gulfam</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeelani Khan, Naveed</au><au>Ahamad, Gulfam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy optimisation based cricket talent identification</atitle><jtitle>Expert systems with applications</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>237</volume><spage>121573</spage><pages>121573-</pages><artnum>121573</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this study, we proposed a cricket talent identification model based on fuzzy optimization that employs the fuzzy analytical hierarchy process (FAHP) and particle swarm optimization (PSO). To evaluate the performance of the model, we used a primary dataset (n = 56) collected from four different schools in J&amp;K UT, India. Our model demonstrated high accuracy, precision, and recall with an accuracy of 92.8%, precision of 96%, and recall of 88%. The model also achieved a low miss rate of 11% and an F1-score of 92.3%. To the best of our knowledge, this is the first attempt to identify cricket talent using this methodology, which overcomes many limitations of conventional AHP-based models. By deriving an exact priority vector from the fuzzy comparison matrix for the criteria, our model eliminates the need for further procedures of defuzzification, making it more efficient and accurate. A comparative analysis of results gained from using Gaussian fuzzy numbers is also provided. Our study demonstrates the feasibility and potential of using fuzzy optimization techniques for cricket talent identification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2023.121573</doi><orcidid>https://orcid.org/0000-0001-5315-9777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2024-03, Vol.237, p.121573, Article 121573
issn 0957-4174
1873-6793
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2023_121573
source Elsevier
subjects Cricket
Fuzzy analytical hierarchy process
Fuzzy optimisation
Multicriteria Decision Making (MCDM)
Talent identification
title Fuzzy optimisation based cricket talent identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20optimisation%20based%20cricket%20talent%20identification&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Jeelani%20Khan,%20Naveed&rft.date=2024-03-01&rft.volume=237&rft.spage=121573&rft.pages=121573-&rft.artnum=121573&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2023.121573&rft_dat=%3Celsevier_cross%3ES0957417423020754%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-5146b365c1135e22326464661f74259e9d2d28b233e7142505b3c3b07fd808613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true