Loading…

iBUST: An intelligent behavioural trust model for securing industrial cyber-physical systems

To meet the demand of the world’s largest population, smart manufacturing has accelerated the adoption of smart factories—where autonomous and cooperative instruments across all levels of production and logistics networks are integrated through a Cyber-Physical Production System (CPPS). However, the...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-03, Vol.238, p.121676, Article 121676
Main Authors: Azad, Saiful, Mahmud, Mufti, Zamli, Kamal Z., Kaiser, M. Shamim, Jahan, Sobhana, Razzaque, Md. Abdur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To meet the demand of the world’s largest population, smart manufacturing has accelerated the adoption of smart factories—where autonomous and cooperative instruments across all levels of production and logistics networks are integrated through a Cyber-Physical Production System (CPPS). However, these networks are comprised of various heterogeneous devices with varying computational power and memory capabilities. As a result, many secure communication protocols – that demand considerably high computational power and memory – can not be verbatim employed on these networks, and thereby, leaving them more vulnerable to security threats and attacks over conventional networks. These threats can largely be tackled by employing a Trust Management Model (TMM) by exploiting the behavioural patterns of nodes to identify their trust class. In this context, ML-based models are best suited due to their ability to capture hidden patterns in data, learning and improving the pattern detection accuracy over time to counteract and tackle threats of a dynamic nature, which is absent in most of the conventional models. However, among the existing ML-based solutions in detecting attack patterns, many of them are computationally expensive, require a long training time, and a considerably large amount of training data—which are seldom available. An aid to this is the association rule learning (ARL) paradigm, whose models are computationally inexpensive and do not require a long training time. Therefore, this paper proposes an ARL-based intelligent Behavioural Trust Model (iBUST) for securing the CPPS. For this intelligent TMM, a variant of Frequency Pattern Growth (FP-Growth), called enhanced FP-Growth (EFP-Growth) algorithm is developed by altering the internal data structures for faster execution and by developing a modified exponential decay function (MEDF) to automatically calculate minimum supports for adapting trust evolution characteristics. In addition, a new optimisation model for finding optimum parameter values in the MEDF and an algorithm for transmuting a 1D quantitative feature into a respective categorical feature are developed to facilitate the model. Afterwards, the trust class of an object is identified employing the Naïve Bayes classifier. This proposed model is evaluated on a trust evolution-supported experimental environment along with other compared models taking a benchmark dataset into consideration, where it outperforms its counterparts. •An intelligent
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2023.121676