Loading…

Riemann–Liouville fractional integral type exponential sampling Kantorovich series

In the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula c...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-03, Vol.238, p.122350, Article 122350
Main Authors: Kursun, Sadettin, Aral, Ali, Acar, Tuncer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953
cites cdi_FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953
container_end_page
container_issue
container_start_page 122350
container_title Expert systems with applications
container_volume 238
creator Kursun, Sadettin
Aral, Ali
Acar, Tuncer
description In the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula considering locally regular functions. Secondly, we deal with logarithmic weighted spaces. By using a certain weighted logarithmic modulus of continuity, we obtain a rate of convergence and give a quantitative form of Voronovskaja-type theorem considering the remainder of Mellin–Taylor’s formula. Moreover, we give a relation between generalized exponential sampling operators and newly constructed operators. Finally, we present some examples of kernels satisfying the obtained results. The results are examined by illustrative numerical table and graphical representations. •Exponential-type sampling series were introduced in the 1980s by optical physicists and engineers to study physically phenomena.
doi_str_mv 10.1016/j.eswa.2023.122350
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2023_122350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741742302852X</els_id><sourcerecordid>S095741742302852X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhbNQsFZfwNW8wIw3mcmEATdS_MOCIN2HS3JTU6aZIYnV7nwH39AncUpdu7qHC9_h8DF2xaHiwNvrTUXpAysBoq64ELWEEzaDTqqy4ao5Y-cpbQC4AlAztnr1tMUQfr6-l3543_m-p8JFNNkPAfvCh0zrOIW8H6mgz3EIFLKfHgm3Y-_DunjGkIc47Lx5KxJFT-mCnTrsE13-3Tlb3d-tFo_l8uXhaXG7LE0NkMu6bhy3LQqrlIOOt2hN5xCl6TjKTjmrrFHoSDRt3bQowUIDUnS2FaaT9ZyJY62JQ0qRnB6j32Lcaw76oEJv9EGFPqjQRxUTdHOEaBq28xR1Mp6CIesjmazt4P_DfwFhZGzD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Riemann–Liouville fractional integral type exponential sampling Kantorovich series</title><source>ScienceDirect Freedom Collection</source><creator>Kursun, Sadettin ; Aral, Ali ; Acar, Tuncer</creator><creatorcontrib>Kursun, Sadettin ; Aral, Ali ; Acar, Tuncer</creatorcontrib><description>In the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula considering locally regular functions. Secondly, we deal with logarithmic weighted spaces. By using a certain weighted logarithmic modulus of continuity, we obtain a rate of convergence and give a quantitative form of Voronovskaja-type theorem considering the remainder of Mellin–Taylor’s formula. Moreover, we give a relation between generalized exponential sampling operators and newly constructed operators. Finally, we present some examples of kernels satisfying the obtained results. The results are examined by illustrative numerical table and graphical representations. •Exponential-type sampling series were introduced in the 1980s by optical physicists and engineers to study physically phenomena.</description><identifier>ISSN: 0957-4174</identifier><identifier>DOI: 10.1016/j.eswa.2023.122350</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Exponential sampling series ; Fractional integrals ; Logarithmic weighted space of functions ; Modulus of continuity ; Rate of convergence ; Voronovskaja-type theorem</subject><ispartof>Expert systems with applications, 2024-03, Vol.238, p.122350, Article 122350</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953</citedby><cites>FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953</cites><orcidid>0000-0001-6697-9627 ; 0000-0003-0982-9459 ; 0000-0002-2024-8607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kursun, Sadettin</creatorcontrib><creatorcontrib>Aral, Ali</creatorcontrib><creatorcontrib>Acar, Tuncer</creatorcontrib><title>Riemann–Liouville fractional integral type exponential sampling Kantorovich series</title><title>Expert systems with applications</title><description>In the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula considering locally regular functions. Secondly, we deal with logarithmic weighted spaces. By using a certain weighted logarithmic modulus of continuity, we obtain a rate of convergence and give a quantitative form of Voronovskaja-type theorem considering the remainder of Mellin–Taylor’s formula. Moreover, we give a relation between generalized exponential sampling operators and newly constructed operators. Finally, we present some examples of kernels satisfying the obtained results. The results are examined by illustrative numerical table and graphical representations. •Exponential-type sampling series were introduced in the 1980s by optical physicists and engineers to study physically phenomena.</description><subject>Exponential sampling series</subject><subject>Fractional integrals</subject><subject>Logarithmic weighted space of functions</subject><subject>Modulus of continuity</subject><subject>Rate of convergence</subject><subject>Voronovskaja-type theorem</subject><issn>0957-4174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhbNQsFZfwNW8wIw3mcmEATdS_MOCIN2HS3JTU6aZIYnV7nwH39AncUpdu7qHC9_h8DF2xaHiwNvrTUXpAysBoq64ELWEEzaDTqqy4ao5Y-cpbQC4AlAztnr1tMUQfr6-l3543_m-p8JFNNkPAfvCh0zrOIW8H6mgz3EIFLKfHgm3Y-_DunjGkIc47Lx5KxJFT-mCnTrsE13-3Tlb3d-tFo_l8uXhaXG7LE0NkMu6bhy3LQqrlIOOt2hN5xCl6TjKTjmrrFHoSDRt3bQowUIDUnS2FaaT9ZyJY62JQ0qRnB6j32Lcaw76oEJv9EGFPqjQRxUTdHOEaBq28xR1Mp6CIesjmazt4P_DfwFhZGzD</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Kursun, Sadettin</creator><creator>Aral, Ali</creator><creator>Acar, Tuncer</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6697-9627</orcidid><orcidid>https://orcid.org/0000-0003-0982-9459</orcidid><orcidid>https://orcid.org/0000-0002-2024-8607</orcidid></search><sort><creationdate>20240315</creationdate><title>Riemann–Liouville fractional integral type exponential sampling Kantorovich series</title><author>Kursun, Sadettin ; Aral, Ali ; Acar, Tuncer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Exponential sampling series</topic><topic>Fractional integrals</topic><topic>Logarithmic weighted space of functions</topic><topic>Modulus of continuity</topic><topic>Rate of convergence</topic><topic>Voronovskaja-type theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kursun, Sadettin</creatorcontrib><creatorcontrib>Aral, Ali</creatorcontrib><creatorcontrib>Acar, Tuncer</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kursun, Sadettin</au><au>Aral, Ali</au><au>Acar, Tuncer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Liouville fractional integral type exponential sampling Kantorovich series</atitle><jtitle>Expert systems with applications</jtitle><date>2024-03-15</date><risdate>2024</risdate><volume>238</volume><spage>122350</spage><pages>122350-</pages><artnum>122350</artnum><issn>0957-4174</issn><abstract>In the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula considering locally regular functions. Secondly, we deal with logarithmic weighted spaces. By using a certain weighted logarithmic modulus of continuity, we obtain a rate of convergence and give a quantitative form of Voronovskaja-type theorem considering the remainder of Mellin–Taylor’s formula. Moreover, we give a relation between generalized exponential sampling operators and newly constructed operators. Finally, we present some examples of kernels satisfying the obtained results. The results are examined by illustrative numerical table and graphical representations. •Exponential-type sampling series were introduced in the 1980s by optical physicists and engineers to study physically phenomena.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2023.122350</doi><orcidid>https://orcid.org/0000-0001-6697-9627</orcidid><orcidid>https://orcid.org/0000-0003-0982-9459</orcidid><orcidid>https://orcid.org/0000-0002-2024-8607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2024-03, Vol.238, p.122350, Article 122350
issn 0957-4174
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2023_122350
source ScienceDirect Freedom Collection
subjects Exponential sampling series
Fractional integrals
Logarithmic weighted space of functions
Modulus of continuity
Rate of convergence
Voronovskaja-type theorem
title Riemann–Liouville fractional integral type exponential sampling Kantorovich series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Liouville%20fractional%20integral%20type%20exponential%20sampling%20Kantorovich%20series&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Kursun,%20Sadettin&rft.date=2024-03-15&rft.volume=238&rft.spage=122350&rft.pages=122350-&rft.artnum=122350&rft.issn=0957-4174&rft_id=info:doi/10.1016/j.eswa.2023.122350&rft_dat=%3Celsevier_cross%3ES095741742302852X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-334f1d6a2d77f0916adc9faa5c91a597fd7dc7afe246346a50d040529d62c953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true