Loading…
Human Evolutionary Optimization Algorithm
This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the h...
Saved in:
Published in: | Expert systems with applications 2024-05, Vol.241, p.122638, Article 122638 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces the Human Evolutionary Optimization Algorithm (HEOA), a metaheuristic algorithm inspired by human evolution. HEOA divides the global search process into two distinct phases: human exploration and human development. Logistic Chaos Mapping is employed for initialization. In the human exploration phase, an initial global search is conducted, followed by the human development phase, in which the population is categorized into leaders, explorers, followers, and losers, each utilizing distinct search strategies. The convergence speed and search accuracy of HEOA are evaluated using 23 well-established test functions. Furthermore, the algorithm's applicability in engineering optimization is assessed with four engineering problems. A comparative analysis with ten other algorithms highlights HEOA's effectiveness, as evidenced by various performance metrics and statistical measures. Consistently, the results demonstrate that HEOA surpasses most current state-of-the-art algorithms in approximating optimal solutions for complex global optimization problems. The MATLAB code for HEOA is available at https://github.com/junbolian/HEOA.git. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2023.122638 |