Loading…

Multi-criteria group decision making based on graph neural networks in Pythagorean fuzzy environment

Given that the majority of existing approaches for multi-criteria group decision making (MCGDM) rely solely on the preferences of decision makers (DMs) and fail to consider the various relationships between alternatives, this paper attempts to model the relevant relational structures using graphs an...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-05, Vol.242, p.122803, Article 122803
Main Authors: Meng, Zhenhua, Lin, Rongheng, Wu, Budan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given that the majority of existing approaches for multi-criteria group decision making (MCGDM) rely solely on the preferences of decision makers (DMs) and fail to consider the various relationships between alternatives, this paper attempts to model the relevant relational structures using graphs and introduce the concept of graph neural networks (GNNs) in the context of group decision-making. By leveraging the powerful expressive capabilities of GNNs, the aim is to mine additional information pertinent to the decision-making process and screen out alternatives for the final decision. To begin, we provide a mapping of MCGDM to the graph domain and construct a corresponding relation graph among alternatives. Additionally, to deal with uncertain or vague information, we transform the group decision-making problem into a Pythagorean fuzzy environment and define a novel measure of entropy specifically designed for Pythagorean fuzzy sets (PFSs) in the entropy weight model to determine the weights of criteria. Simultaneously, we propose a new distance measure for PFSs, which is then applied to the extended Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method to rank alternatives. Furthermore, we develop a GNNs-based Pythagorean fuzzy MCGDM approach that incorporates the aforementioned techniques for group decision-making. Finally, to validate the effectiveness and superiority of this approach, we employ it to address a supplier selection issue. Compared with baseline group decision-making approaches, our approach can indeed capture the relationships among alternatives in complex group decision-making scenarios and outperforms the best-performing baseline by nearly 2.8% in terms of ranking accuracy. •A mapping from multi-criteria group decision making to the graph domain is provided.•A normalized entropy measure is defined in Pythagorean fuzzy sets.•A modified Pythagorean fuzzy distance measure is proposed.•A Pythagorean fuzzy group decision-making approach based on graph neural networks is developed.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2023.122803