Loading…

A numerical verification method for multi-class feed-forward neural networks

The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before de...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-08, Vol.247, p.123345, Article 123345
Main Authors: Grimm, Daniel, Tollner, Dávid, Kraus, David, Török, Árpád, Sax, Eric, Szalay, Zsolt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3
cites cdi_FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3
container_end_page
container_issue
container_start_page 123345
container_title Expert systems with applications
container_volume 247
creator Grimm, Daniel
Tollner, Dávid
Kraus, David
Török, Árpád
Sax, Eric
Szalay, Zsolt
description The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before deploying them in such settings. In this publication, we present a novel approach for verifying the correctness of these networks using a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to accurately predict the output of the network for given specification intervals, providing a valuable tool for ensuring the reliability and safety of neural networks in embedded systems. •A novel verification concept for neural networks is developed.•Continuous activation function based NNs can be verified.•The approach provides explainability and transparency for the verified neural network.•Monotonicity or linearity are not necessary during the verification.•No model simplification is required to evaluate the operation process.
doi_str_mv 10.1016/j.eswa.2024.123345
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2024_123345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417424002100</els_id><sourcerecordid>S0957417424002100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CovkDHJySQOuCnFGxTc6DpkkjOYOhdJpi2-vSl17dmcC3yHn4-QW8ErwYW-21aYD66SXKpKSABVn5GFuDfAtGngnCx4UxumhFGX5CrnLefCcG4WZLOi427AFL3r6b70rkxznEY64Pw5BdpNiQ67fo7M9y5n2iEGVo4HlwIdcZcKN-J8mNJXviYXnesz3vz1Jfl4enxfv7DN2_PrerVhHpSamYCSRoMHHRrjtCwbtC1oo71rVWjqUMq1tZTYQV0Qw73WLRgfwDvVwZLI01-fppwTdvY7xcGlHyu4PfqwW3v0YY8-7MlHgR5OEJZk-4jJZh9x9BhiQj_bMMX_8F-Pgmoz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical verification method for multi-class feed-forward neural networks</title><source>ScienceDirect Journals</source><creator>Grimm, Daniel ; Tollner, Dávid ; Kraus, David ; Török, Árpád ; Sax, Eric ; Szalay, Zsolt</creator><creatorcontrib>Grimm, Daniel ; Tollner, Dávid ; Kraus, David ; Török, Árpád ; Sax, Eric ; Szalay, Zsolt</creatorcontrib><description>The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before deploying them in such settings. In this publication, we present a novel approach for verifying the correctness of these networks using a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to accurately predict the output of the network for given specification intervals, providing a valuable tool for ensuring the reliability and safety of neural networks in embedded systems. •A novel verification concept for neural networks is developed.•Continuous activation function based NNs can be verified.•The approach provides explainability and transparency for the verified neural network.•Monotonicity or linearity are not necessary during the verification.•No model simplification is required to evaluate the operation process.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2024.123345</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Explainable neural networks ; Neural network verification ; Nonlinear optimization</subject><ispartof>Expert systems with applications, 2024-08, Vol.247, p.123345, Article 123345</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3</citedby><cites>FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3</cites><orcidid>0000-0002-6172-5772 ; 0000-0002-1985-4095 ; 0000-0003-3743-872X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grimm, Daniel</creatorcontrib><creatorcontrib>Tollner, Dávid</creatorcontrib><creatorcontrib>Kraus, David</creatorcontrib><creatorcontrib>Török, Árpád</creatorcontrib><creatorcontrib>Sax, Eric</creatorcontrib><creatorcontrib>Szalay, Zsolt</creatorcontrib><title>A numerical verification method for multi-class feed-forward neural networks</title><title>Expert systems with applications</title><description>The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before deploying them in such settings. In this publication, we present a novel approach for verifying the correctness of these networks using a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to accurately predict the output of the network for given specification intervals, providing a valuable tool for ensuring the reliability and safety of neural networks in embedded systems. •A novel verification concept for neural networks is developed.•Continuous activation function based NNs can be verified.•The approach provides explainability and transparency for the verified neural network.•Monotonicity or linearity are not necessary during the verification.•No model simplification is required to evaluate the operation process.</description><subject>Explainable neural networks</subject><subject>Neural network verification</subject><subject>Nonlinear optimization</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CovkDHJySQOuCnFGxTc6DpkkjOYOhdJpi2-vSl17dmcC3yHn4-QW8ErwYW-21aYD66SXKpKSABVn5GFuDfAtGngnCx4UxumhFGX5CrnLefCcG4WZLOi427AFL3r6b70rkxznEY64Pw5BdpNiQ67fo7M9y5n2iEGVo4HlwIdcZcKN-J8mNJXviYXnesz3vz1Jfl4enxfv7DN2_PrerVhHpSamYCSRoMHHRrjtCwbtC1oo71rVWjqUMq1tZTYQV0Qw73WLRgfwDvVwZLI01-fppwTdvY7xcGlHyu4PfqwW3v0YY8-7MlHgR5OEJZk-4jJZh9x9BhiQj_bMMX_8F-Pgmoz</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Grimm, Daniel</creator><creator>Tollner, Dávid</creator><creator>Kraus, David</creator><creator>Török, Árpád</creator><creator>Sax, Eric</creator><creator>Szalay, Zsolt</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6172-5772</orcidid><orcidid>https://orcid.org/0000-0002-1985-4095</orcidid><orcidid>https://orcid.org/0000-0003-3743-872X</orcidid></search><sort><creationdate>20240801</creationdate><title>A numerical verification method for multi-class feed-forward neural networks</title><author>Grimm, Daniel ; Tollner, Dávid ; Kraus, David ; Török, Árpád ; Sax, Eric ; Szalay, Zsolt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explainable neural networks</topic><topic>Neural network verification</topic><topic>Nonlinear optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Daniel</creatorcontrib><creatorcontrib>Tollner, Dávid</creatorcontrib><creatorcontrib>Kraus, David</creatorcontrib><creatorcontrib>Török, Árpád</creatorcontrib><creatorcontrib>Sax, Eric</creatorcontrib><creatorcontrib>Szalay, Zsolt</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Daniel</au><au>Tollner, Dávid</au><au>Kraus, David</au><au>Török, Árpád</au><au>Sax, Eric</au><au>Szalay, Zsolt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical verification method for multi-class feed-forward neural networks</atitle><jtitle>Expert systems with applications</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>247</volume><spage>123345</spage><pages>123345-</pages><artnum>123345</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before deploying them in such settings. In this publication, we present a novel approach for verifying the correctness of these networks using a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to accurately predict the output of the network for given specification intervals, providing a valuable tool for ensuring the reliability and safety of neural networks in embedded systems. •A novel verification concept for neural networks is developed.•Continuous activation function based NNs can be verified.•The approach provides explainability and transparency for the verified neural network.•Monotonicity or linearity are not necessary during the verification.•No model simplification is required to evaluate the operation process.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2024.123345</doi><orcidid>https://orcid.org/0000-0002-6172-5772</orcidid><orcidid>https://orcid.org/0000-0002-1985-4095</orcidid><orcidid>https://orcid.org/0000-0003-3743-872X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2024-08, Vol.247, p.123345, Article 123345
issn 0957-4174
1873-6793
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2024_123345
source ScienceDirect Journals
subjects Explainable neural networks
Neural network verification
Nonlinear optimization
title A numerical verification method for multi-class feed-forward neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20verification%20method%20for%20multi-class%20feed-forward%20neural%20networks&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Grimm,%20Daniel&rft.date=2024-08-01&rft.volume=247&rft.spage=123345&rft.pages=123345-&rft.artnum=123345&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2024.123345&rft_dat=%3Celsevier_cross%3ES0957417424002100%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-1309563c36d97a620953bb3676cab4d95ddddab522ef3534470c66b37cd3ca4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true