Loading…

Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets

Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, co...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2024-09, Vol.249, p.123660, Article 123660
Main Authors: Pal, Jimut Bahan, Bhattacharyea, Aniket, Banerjee, Debasis, Maharaj, Br. Tamal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3
container_end_page
container_issue
container_start_page 123660
container_title Expert systems with applications
container_volume 249
creator Pal, Jimut Bahan
Bhattacharyea, Aniket
Banerjee, Debasis
Maharaj, Br. Tamal
description Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.
doi_str_mv 10.1016/j.eswa.2024.123660
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2024_123660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417424005268</els_id><sourcerecordid>S0957417424005268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQQC0EEqVwAVa-QIqdnxPEplT8pEpUfJfW4Jm0rtKkst2i3oTjkiisWXlkzXsaPcYupZhIIfOr9YT8N0xiEacTGSd5Lo7YSBYqiXJVJsdsJMpMRalU6Sk7834thFRCqBH7meIeGmObJbeND91I3NNyQ02AYNuGQ4P883bGTQ3e28qa4ds2fEvOblfkoOZfddsi9xsCx8PKtbvlimO7gW4LELaD6ppPuQ87PPCOX3TKXh1WxJt2TzV_-YgWt68cIYCn4M_ZSQW1p4u_d8ze7-_eZo_R_PnhaTadRybOZIjSRBaZySVgLMo0UWVWoJJlVZRo8gywUARkjMxTFZcqybCSZZoSZVhgYXJMxiwevMa13juq9NbZDbiDlkL3bfVa921131YPbTvoZoCou2xvyWlvLHXt0DoyQWNr_8N_AfQshJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><source>ScienceDirect Freedom Collection</source><creator>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</creator><creatorcontrib>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</creatorcontrib><description>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2024.123660</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automated blood test ; Detection ; Domain adaptation ; Instance segmentation ; Peripheral blood smear</subject><ispartof>Expert systems with applications, 2024-09, Vol.249, p.123660, Article 123660</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</cites><orcidid>0000-0002-1206-7902 ; 0000-0002-5489-4906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pal, Jimut Bahan</creatorcontrib><creatorcontrib>Bhattacharyea, Aniket</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Maharaj, Br. Tamal</creatorcontrib><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><title>Expert systems with applications</title><description>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</description><subject>Automated blood test</subject><subject>Detection</subject><subject>Domain adaptation</subject><subject>Instance segmentation</subject><subject>Peripheral blood smear</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQQC0EEqVwAVa-QIqdnxPEplT8pEpUfJfW4Jm0rtKkst2i3oTjkiisWXlkzXsaPcYupZhIIfOr9YT8N0xiEacTGSd5Lo7YSBYqiXJVJsdsJMpMRalU6Sk7834thFRCqBH7meIeGmObJbeND91I3NNyQ02AYNuGQ4P883bGTQ3e28qa4ds2fEvOblfkoOZfddsi9xsCx8PKtbvlimO7gW4LELaD6ppPuQ87PPCOX3TKXh1WxJt2TzV_-YgWt68cIYCn4M_ZSQW1p4u_d8ze7-_eZo_R_PnhaTadRybOZIjSRBaZySVgLMo0UWVWoJJlVZRo8gywUARkjMxTFZcqybCSZZoSZVhgYXJMxiwevMa13juq9NbZDbiDlkL3bfVa921131YPbTvoZoCou2xvyWlvLHXt0DoyQWNr_8N_AfQshJ4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pal, Jimut Bahan</creator><creator>Bhattacharyea, Aniket</creator><creator>Banerjee, Debasis</creator><creator>Maharaj, Br. Tamal</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1206-7902</orcidid><orcidid>https://orcid.org/0000-0002-5489-4906</orcidid></search><sort><creationdate>20240901</creationdate><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><author>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated blood test</topic><topic>Detection</topic><topic>Domain adaptation</topic><topic>Instance segmentation</topic><topic>Peripheral blood smear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Jimut Bahan</creatorcontrib><creatorcontrib>Bhattacharyea, Aniket</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Maharaj, Br. Tamal</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Jimut Bahan</au><au>Bhattacharyea, Aniket</au><au>Banerjee, Debasis</au><au>Maharaj, Br. Tamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</atitle><jtitle>Expert systems with applications</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>249</volume><spage>123660</spage><pages>123660-</pages><artnum>123660</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2024.123660</doi><orcidid>https://orcid.org/0000-0002-1206-7902</orcidid><orcidid>https://orcid.org/0000-0002-5489-4906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2024-09, Vol.249, p.123660, Article 123660
issn 0957-4174
1873-6793
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2024_123660
source ScienceDirect Freedom Collection
subjects Automated blood test
Detection
Domain adaptation
Instance segmentation
Peripheral blood smear
title Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20instance%20segmentation%20and%20WBC%20classification%20in%20peripheral%20blood%20smear%20through%20domain%20adaptation:%20A%20study%20on%20PBC%20and%20the%20novel%20RV-PBS%20datasets&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Pal,%20Jimut%20Bahan&rft.date=2024-09-01&rft.volume=249&rft.spage=123660&rft.pages=123660-&rft.artnum=123660&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2024.123660&rft_dat=%3Celsevier_cross%3ES0957417424005268%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true