Loading…
Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets
Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, co...
Saved in:
Published in: | Expert systems with applications 2024-09, Vol.249, p.123660, Article 123660 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3 |
container_end_page | |
container_issue | |
container_start_page | 123660 |
container_title | Expert systems with applications |
container_volume | 249 |
creator | Pal, Jimut Bahan Bhattacharyea, Aniket Banerjee, Debasis Maharaj, Br. Tamal |
description | Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses. |
doi_str_mv | 10.1016/j.eswa.2024.123660 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2024_123660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417424005268</els_id><sourcerecordid>S0957417424005268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQQC0EEqVwAVa-QIqdnxPEplT8pEpUfJfW4Jm0rtKkst2i3oTjkiisWXlkzXsaPcYupZhIIfOr9YT8N0xiEacTGSd5Lo7YSBYqiXJVJsdsJMpMRalU6Sk7834thFRCqBH7meIeGmObJbeND91I3NNyQ02AYNuGQ4P883bGTQ3e28qa4ds2fEvOblfkoOZfddsi9xsCx8PKtbvlimO7gW4LELaD6ppPuQ87PPCOX3TKXh1WxJt2TzV_-YgWt68cIYCn4M_ZSQW1p4u_d8ze7-_eZo_R_PnhaTadRybOZIjSRBaZySVgLMo0UWVWoJJlVZRo8gywUARkjMxTFZcqybCSZZoSZVhgYXJMxiwevMa13juq9NbZDbiDlkL3bfVa921131YPbTvoZoCou2xvyWlvLHXt0DoyQWNr_8N_AfQshJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><source>ScienceDirect Freedom Collection</source><creator>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</creator><creatorcontrib>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</creatorcontrib><description>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2024.123660</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automated blood test ; Detection ; Domain adaptation ; Instance segmentation ; Peripheral blood smear</subject><ispartof>Expert systems with applications, 2024-09, Vol.249, p.123660, Article 123660</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</cites><orcidid>0000-0002-1206-7902 ; 0000-0002-5489-4906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pal, Jimut Bahan</creatorcontrib><creatorcontrib>Bhattacharyea, Aniket</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Maharaj, Br. Tamal</creatorcontrib><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><title>Expert systems with applications</title><description>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</description><subject>Automated blood test</subject><subject>Detection</subject><subject>Domain adaptation</subject><subject>Instance segmentation</subject><subject>Peripheral blood smear</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQQC0EEqVwAVa-QIqdnxPEplT8pEpUfJfW4Jm0rtKkst2i3oTjkiisWXlkzXsaPcYupZhIIfOr9YT8N0xiEacTGSd5Lo7YSBYqiXJVJsdsJMpMRalU6Sk7834thFRCqBH7meIeGmObJbeND91I3NNyQ02AYNuGQ4P883bGTQ3e28qa4ds2fEvOblfkoOZfddsi9xsCx8PKtbvlimO7gW4LELaD6ppPuQ87PPCOX3TKXh1WxJt2TzV_-YgWt68cIYCn4M_ZSQW1p4u_d8ze7-_eZo_R_PnhaTadRybOZIjSRBaZySVgLMo0UWVWoJJlVZRo8gywUARkjMxTFZcqybCSZZoSZVhgYXJMxiwevMa13juq9NbZDbiDlkL3bfVa921131YPbTvoZoCou2xvyWlvLHXt0DoyQWNr_8N_AfQshJ4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pal, Jimut Bahan</creator><creator>Bhattacharyea, Aniket</creator><creator>Banerjee, Debasis</creator><creator>Maharaj, Br. Tamal</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1206-7902</orcidid><orcidid>https://orcid.org/0000-0002-5489-4906</orcidid></search><sort><creationdate>20240901</creationdate><title>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</title><author>Pal, Jimut Bahan ; Bhattacharyea, Aniket ; Banerjee, Debasis ; Maharaj, Br. Tamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated blood test</topic><topic>Detection</topic><topic>Domain adaptation</topic><topic>Instance segmentation</topic><topic>Peripheral blood smear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Jimut Bahan</creatorcontrib><creatorcontrib>Bhattacharyea, Aniket</creatorcontrib><creatorcontrib>Banerjee, Debasis</creatorcontrib><creatorcontrib>Maharaj, Br. Tamal</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Jimut Bahan</au><au>Bhattacharyea, Aniket</au><au>Banerjee, Debasis</au><au>Maharaj, Br. Tamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets</atitle><jtitle>Expert systems with applications</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>249</volume><spage>123660</spage><pages>123660-</pages><artnum>123660</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Automating blood cell counting and detection from smear slides holds significant potential for aiding doctors in disease diagnosis through blood tests. However, existing literature has not adequately addressed using whole slide data in this context. This study introduces the novel RV-PBS dataset, comprising ten distinct peripheral blood smear classes, each featuring multiple multi-class White Blood Cells per slide, specifically designed, for instance segmentation benchmarks. While conventional instance segmentation models like Mask R-CNN exhibit promising results in segmenting medical artifact instances, they face challenges in scenarios with limited samples and class imbalances within the dataset. This challenge prompted us to explore innovative techniques such as domain adaptation using a similar dataset to enhance the classification accuracy of Mask R-CNN, a novel approach in the domain of medical image analysis. Our study has successfully established a comprehensive pipeline capable of segmenting, detecting, and classifying blood samples from slides, striking an optimal balance between computational complexity and accurate classification of medical artifacts. This advancement enables precise cell counting and classification, facilitating doctors in refining their diagnostic analyses.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2024.123660</doi><orcidid>https://orcid.org/0000-0002-1206-7902</orcidid><orcidid>https://orcid.org/0000-0002-5489-4906</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2024-09, Vol.249, p.123660, Article 123660 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_eswa_2024_123660 |
source | ScienceDirect Freedom Collection |
subjects | Automated blood test Detection Domain adaptation Instance segmentation Peripheral blood smear |
title | Advancing instance segmentation and WBC classification in peripheral blood smear through domain adaptation: A study on PBC and the novel RV-PBS datasets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20instance%20segmentation%20and%20WBC%20classification%20in%20peripheral%20blood%20smear%20through%20domain%20adaptation:%20A%20study%20on%20PBC%20and%20the%20novel%20RV-PBS%20datasets&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Pal,%20Jimut%20Bahan&rft.date=2024-09-01&rft.volume=249&rft.spage=123660&rft.pages=123660-&rft.artnum=123660&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2024.123660&rft_dat=%3Celsevier_cross%3ES0957417424005268%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-43185c61ad209437958d719f89dc65ad87eaecc164729735df1944ee5d8d8c6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |