Loading…

An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants

This study investigated the detection and isolation of gas path faults in a power plant gas turbine using efficiency data and fundamental quantities. First, attention is given to balancing data and selecting instances. Two new neural-fuzzy networks were then designed and trained using the Hippopotam...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2025-03, Vol.263, p.125497, Article 125497
Main Authors: Amiri, Mohammad Hussein, Hashjin, Nastaran Mehrabi, Najafabadi, Maryam Khanian, Beheshti, Amin, Khodadadi, Nima
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-d23464e3e8b27bac9f37629715cb3a346f2f096098db7b4befb6bb0896b1c13c3
container_end_page
container_issue
container_start_page 125497
container_title Expert systems with applications
container_volume 263
creator Amiri, Mohammad Hussein
Hashjin, Nastaran Mehrabi
Najafabadi, Maryam Khanian
Beheshti, Amin
Khodadadi, Nima
description This study investigated the detection and isolation of gas path faults in a power plant gas turbine using efficiency data and fundamental quantities. First, attention is given to balancing data and selecting instances. Two new neural-fuzzy networks were then designed and trained using the Hippopotamus optimization algorithm. Developing these two networks aims to create a network resilient to noise with high accuracy and a low parameter count. Third, a broad spectrum of Artificial Intelligence based methods, such as shallow neural networks, machine learning models, and deep learning models, were employed to compare the proposed networks for fault detection and isolation of one power plant 163 MW gas turbine from Siemens Company. The investigation results indicate that the proposed hierarchical structure achieved an average of 99.81 % for fault detection and 99.50 % for fault isolation, consisting of only 203 learning parameters for fault detection and 335 for fault isolation, and operates better than the methods mentioned above in terms of accuracy, precision, sensitivity, and F1-Score metrics criteria.
doi_str_mv 10.1016/j.eswa.2024.125497
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eswa_2024_125497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417424023649</els_id><sourcerecordid>S0957417424023649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-d23464e3e8b27bac9f37629715cb3a346f2f096098db7b4befb6bb0896b1c13c3</originalsourceid><addsrcrecordid>eNp9kM9OwzAMh3MAiTF4AU55gZYk7ZpW4jJN_Jk0iQucIydxtkwlrZJsE29Pxzhzsi3r-8n-CHngrOSMN4_7EtMJSsFEXXKxqDt5RWasW8ii5rK-Ibcp7RnjkjE5I7tloD6E4QjZH5FayFDYOLWBLtcUxjEOYHbUDZFazGiyD1sKwVKfhh5-JweHPqcphW4h0XyI2gdMFDIdhxNGOvYQcroj1w76hPd_dU4-X54_Vm_F5v11vVpuCsNbngsrqrqpscJWC6nBdK6SjegkXxhdwbRzwrGuYV1rtdS1RqcbrVnbNZobXplqTsQl18QhpYhOjdF_QfxWnKmzH7VXZz_q7Edd_EzQ0wXC6bKjx6iS8RgMWh-nn5Ud_H_4D0PhcmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants</title><source>Elsevier</source><creator>Amiri, Mohammad Hussein ; Hashjin, Nastaran Mehrabi ; Najafabadi, Maryam Khanian ; Beheshti, Amin ; Khodadadi, Nima</creator><creatorcontrib>Amiri, Mohammad Hussein ; Hashjin, Nastaran Mehrabi ; Najafabadi, Maryam Khanian ; Beheshti, Amin ; Khodadadi, Nima</creatorcontrib><description>This study investigated the detection and isolation of gas path faults in a power plant gas turbine using efficiency data and fundamental quantities. First, attention is given to balancing data and selecting instances. Two new neural-fuzzy networks were then designed and trained using the Hippopotamus optimization algorithm. Developing these two networks aims to create a network resilient to noise with high accuracy and a low parameter count. Third, a broad spectrum of Artificial Intelligence based methods, such as shallow neural networks, machine learning models, and deep learning models, were employed to compare the proposed networks for fault detection and isolation of one power plant 163 MW gas turbine from Siemens Company. The investigation results indicate that the proposed hierarchical structure achieved an average of 99.81 % for fault detection and 99.50 % for fault isolation, consisting of only 203 learning parameters for fault detection and 335 for fault isolation, and operates better than the methods mentioned above in terms of accuracy, precision, sensitivity, and F1-Score metrics criteria.</description><identifier>ISSN: 0957-4174</identifier><identifier>DOI: 10.1016/j.eswa.2024.125497</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fault detection and isolation ; Gas path faults ; Gas turbine ; Hippopotamus optimization algorithm ; Machine learning ; Type-3 Fuzzy</subject><ispartof>Expert systems with applications, 2025-03, Vol.263, p.125497, Article 125497</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-d23464e3e8b27bac9f37629715cb3a346f2f096098db7b4befb6bb0896b1c13c3</cites><orcidid>0000-0002-5988-5494 ; 0000-0002-8348-6530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Amiri, Mohammad Hussein</creatorcontrib><creatorcontrib>Hashjin, Nastaran Mehrabi</creatorcontrib><creatorcontrib>Najafabadi, Maryam Khanian</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><creatorcontrib>Khodadadi, Nima</creatorcontrib><title>An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants</title><title>Expert systems with applications</title><description>This study investigated the detection and isolation of gas path faults in a power plant gas turbine using efficiency data and fundamental quantities. First, attention is given to balancing data and selecting instances. Two new neural-fuzzy networks were then designed and trained using the Hippopotamus optimization algorithm. Developing these two networks aims to create a network resilient to noise with high accuracy and a low parameter count. Third, a broad spectrum of Artificial Intelligence based methods, such as shallow neural networks, machine learning models, and deep learning models, were employed to compare the proposed networks for fault detection and isolation of one power plant 163 MW gas turbine from Siemens Company. The investigation results indicate that the proposed hierarchical structure achieved an average of 99.81 % for fault detection and 99.50 % for fault isolation, consisting of only 203 learning parameters for fault detection and 335 for fault isolation, and operates better than the methods mentioned above in terms of accuracy, precision, sensitivity, and F1-Score metrics criteria.</description><subject>Fault detection and isolation</subject><subject>Gas path faults</subject><subject>Gas turbine</subject><subject>Hippopotamus optimization algorithm</subject><subject>Machine learning</subject><subject>Type-3 Fuzzy</subject><issn>0957-4174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMh3MAiTF4AU55gZYk7ZpW4jJN_Jk0iQucIydxtkwlrZJsE29Pxzhzsi3r-8n-CHngrOSMN4_7EtMJSsFEXXKxqDt5RWasW8ii5rK-Ibcp7RnjkjE5I7tloD6E4QjZH5FayFDYOLWBLtcUxjEOYHbUDZFazGiyD1sKwVKfhh5-JweHPqcphW4h0XyI2gdMFDIdhxNGOvYQcroj1w76hPd_dU4-X54_Vm_F5v11vVpuCsNbngsrqrqpscJWC6nBdK6SjegkXxhdwbRzwrGuYV1rtdS1RqcbrVnbNZobXplqTsQl18QhpYhOjdF_QfxWnKmzH7VXZz_q7Edd_EzQ0wXC6bKjx6iS8RgMWh-nn5Ud_H_4D0PhcmI</recordid><startdate>20250305</startdate><enddate>20250305</enddate><creator>Amiri, Mohammad Hussein</creator><creator>Hashjin, Nastaran Mehrabi</creator><creator>Najafabadi, Maryam Khanian</creator><creator>Beheshti, Amin</creator><creator>Khodadadi, Nima</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5988-5494</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid></search><sort><creationdate>20250305</creationdate><title>An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants</title><author>Amiri, Mohammad Hussein ; Hashjin, Nastaran Mehrabi ; Najafabadi, Maryam Khanian ; Beheshti, Amin ; Khodadadi, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-d23464e3e8b27bac9f37629715cb3a346f2f096098db7b4befb6bb0896b1c13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Fault detection and isolation</topic><topic>Gas path faults</topic><topic>Gas turbine</topic><topic>Hippopotamus optimization algorithm</topic><topic>Machine learning</topic><topic>Type-3 Fuzzy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, Mohammad Hussein</creatorcontrib><creatorcontrib>Hashjin, Nastaran Mehrabi</creatorcontrib><creatorcontrib>Najafabadi, Maryam Khanian</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><creatorcontrib>Khodadadi, Nima</creatorcontrib><collection>CrossRef</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, Mohammad Hussein</au><au>Hashjin, Nastaran Mehrabi</au><au>Najafabadi, Maryam Khanian</au><au>Beheshti, Amin</au><au>Khodadadi, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants</atitle><jtitle>Expert systems with applications</jtitle><date>2025-03-05</date><risdate>2025</risdate><volume>263</volume><spage>125497</spage><pages>125497-</pages><artnum>125497</artnum><issn>0957-4174</issn><abstract>This study investigated the detection and isolation of gas path faults in a power plant gas turbine using efficiency data and fundamental quantities. First, attention is given to balancing data and selecting instances. Two new neural-fuzzy networks were then designed and trained using the Hippopotamus optimization algorithm. Developing these two networks aims to create a network resilient to noise with high accuracy and a low parameter count. Third, a broad spectrum of Artificial Intelligence based methods, such as shallow neural networks, machine learning models, and deep learning models, were employed to compare the proposed networks for fault detection and isolation of one power plant 163 MW gas turbine from Siemens Company. The investigation results indicate that the proposed hierarchical structure achieved an average of 99.81 % for fault detection and 99.50 % for fault isolation, consisting of only 203 learning parameters for fault detection and 335 for fault isolation, and operates better than the methods mentioned above in terms of accuracy, precision, sensitivity, and F1-Score metrics criteria.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2024.125497</doi><orcidid>https://orcid.org/0000-0002-5988-5494</orcidid><orcidid>https://orcid.org/0000-0002-8348-6530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2025-03, Vol.263, p.125497, Article 125497
issn 0957-4174
language eng
recordid cdi_crossref_primary_10_1016_j_eswa_2024_125497
source Elsevier
subjects Fault detection and isolation
Gas path faults
Gas turbine
Hippopotamus optimization algorithm
Machine learning
Type-3 Fuzzy
title An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20innovative%20data-driven%20AI%20approach%20for%20detecting%20and%20isolating%20faults%20in%20gas%20turbines%20at%20power%20plants&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Amiri,%20Mohammad%20Hussein&rft.date=2025-03-05&rft.volume=263&rft.spage=125497&rft.pages=125497-&rft.artnum=125497&rft.issn=0957-4174&rft_id=info:doi/10.1016/j.eswa.2024.125497&rft_dat=%3Celsevier_cross%3ES0957417424023649%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-d23464e3e8b27bac9f37629715cb3a346f2f096098db7b4befb6bb0896b1c13c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true