Loading…

Association under shear flow in aqueous solutions of pectin

Effects of oscillatory and steady shear flows on intermolecular associations in dilute and semidilute aqueous solutions of pectin in the absence and presence of the hydrogen bond breaking agent urea are reported. A weak oscillatory shear perturbation builds up, depending on polymer concentration, mu...

Full description

Saved in:
Bibliographic Details
Published in:European polymer journal 2005-04, Vol.41 (4), p.761-770
Main Authors: Kjøniksen, Anna-Lena, Hiorth, Marianne, Nyström, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effects of oscillatory and steady shear flows on intermolecular associations in dilute and semidilute aqueous solutions of pectin in the absence and presence of the hydrogen bond breaking agent urea are reported. A weak oscillatory shear perturbation builds up, depending on polymer concentration, multichain aggregates or networks in the course of time and these association structures are mainly stabilized through hydrogen bonds. The association effect is more pronounced at higher concentrations, and the growth of intermolecular interactions is inhibited by the addition of urea. Steady shear measurements on the pectin–water solutions reveal shear thickening at low shear rates for all the concentrations, except the lowest one, and disruption of intermolecular junctions at high shear rates. In the presence of urea, no shear thickening is detected. The polymer concentration dependence of the viscosity at a low shear rate can be described by a power law η ∼ c x , with x = 1.9 and 1.4 without and with urea, respectively. When a low constant shear rate is applied to pectin solutions and this monitoring shear rate is interrupted periodically by transitory high shear rates perturbations during a short time, prominent association structures evolve upon return to the monitoring shear rate. This effect is more evident at a lower polymer concentration, and in the presence of urea, the growth of the association complexes is damped. The shear-induced alignment and stretching of polymer chains and the formation of hydrogen-bonded structures are analyzed in the framework of a model, where cooperative zipping of stretched chains play an important role. Viscosity enhancement is found for a semidilute pectin–water solution in the presence of moderate levels of salt addition (NaCl), suggesting that partial screening of electrostatic interactions promotes growth of energetic cross-links.
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2004.11.006