Loading…
Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites
[Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are cla...
Saved in:
Published in: | European polymer journal 2024-09, Vol.218, p.113337, Article 113337 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573 |
container_end_page | |
container_issue | |
container_start_page | 113337 |
container_title | European polymer journal |
container_volume | 218 |
creator | Rahimi-Ahar, Zohreh Rahimi Ahar, Leile |
description | [Display omitted]
In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future. |
doi_str_mv | 10.1016/j.eurpolymj.2024.113337 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eurpolymj_2024_113337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305724005986</els_id><sourcerecordid>S0014305724005986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhH0AiVJ4BvIATdi10zg9VhV_UiUu7dky9lp1lMSRHZD69qQKcOW0syvNaPZj7AGhQMDqsSnoMw6hPXdNwYGXBaIQQl6xBQCWuYC1vGG3KTUAIEUlFux4OFHsdLvKwjB6cxEdmZPuZ209tWTG6M0q073NfjfdZkMMA8XRU8qCy3rdBxO6ISQ_Urpj1063ie5_5pIdn58Ou9d8__7yttvuc4MbHHOLXFpeG6rcZvMB081YqE0NNUrJp7K2Eugsd1zXVKKVGhBltS5NWZJbS7Fkcs41MaQUyakh-k7Hs0JQFyKqUX9E1IWImolMzu3spKnel6eokvHUG7I-Ti8qG_y_Gd8XMXE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><source>ScienceDirect Freedom Collection</source><creator>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</creator><creatorcontrib>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</creatorcontrib><description>[Display omitted]
In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</description><identifier>ISSN: 0014-3057</identifier><identifier>DOI: 10.1016/j.eurpolymj.2024.113337</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Electrical properties ; Mechanical properties ; Optical properties ; Thermal properties</subject><ispartof>European polymer journal, 2024-09, Vol.218, p.113337, Article 113337</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</cites><orcidid>0000-0001-6804-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rahimi-Ahar, Zohreh</creatorcontrib><creatorcontrib>Rahimi Ahar, Leile</creatorcontrib><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><title>European polymer journal</title><description>[Display omitted]
In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</description><subject>Electrical properties</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Thermal properties</subject><issn>0014-3057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhH0AiVJ4BvIATdi10zg9VhV_UiUu7dky9lp1lMSRHZD69qQKcOW0syvNaPZj7AGhQMDqsSnoMw6hPXdNwYGXBaIQQl6xBQCWuYC1vGG3KTUAIEUlFux4OFHsdLvKwjB6cxEdmZPuZ209tWTG6M0q073NfjfdZkMMA8XRU8qCy3rdBxO6ISQ_Urpj1063ie5_5pIdn58Ou9d8__7yttvuc4MbHHOLXFpeG6rcZvMB081YqE0NNUrJp7K2Eugsd1zXVKKVGhBltS5NWZJbS7Fkcs41MaQUyakh-k7Hs0JQFyKqUX9E1IWImolMzu3spKnel6eokvHUG7I-Ti8qG_y_Gd8XMXE6</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Rahimi-Ahar, Zohreh</creator><creator>Rahimi Ahar, Leile</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6804-9474</orcidid></search><sort><creationdate>20240918</creationdate><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><author>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical properties</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimi-Ahar, Zohreh</creatorcontrib><creatorcontrib>Rahimi Ahar, Leile</creatorcontrib><collection>CrossRef</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimi-Ahar, Zohreh</au><au>Rahimi Ahar, Leile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</atitle><jtitle>European polymer journal</jtitle><date>2024-09-18</date><risdate>2024</risdate><volume>218</volume><spage>113337</spage><pages>113337-</pages><artnum>113337</artnum><issn>0014-3057</issn><abstract>[Display omitted]
In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2024.113337</doi><orcidid>https://orcid.org/0000-0001-6804-9474</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3057 |
ispartof | European polymer journal, 2024-09, Vol.218, p.113337, Article 113337 |
issn | 0014-3057 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_eurpolymj_2024_113337 |
source | ScienceDirect Freedom Collection |
subjects | Electrical properties Mechanical properties Optical properties Thermal properties |
title | Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal,%20optical,%20mechanical,%20dielectric,%20and%20electrical%20properties%20of%20nanocomposites&rft.jtitle=European%20polymer%20journal&rft.au=Rahimi-Ahar,%20Zohreh&rft.date=2024-09-18&rft.volume=218&rft.spage=113337&rft.pages=113337-&rft.artnum=113337&rft.issn=0014-3057&rft_id=info:doi/10.1016/j.eurpolymj.2024.113337&rft_dat=%3Celsevier_cross%3ES0014305724005986%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |