Loading…

Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites

[Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are cla...

Full description

Saved in:
Bibliographic Details
Published in:European polymer journal 2024-09, Vol.218, p.113337, Article 113337
Main Authors: Rahimi-Ahar, Zohreh, Rahimi Ahar, Leile
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573
container_end_page
container_issue
container_start_page 113337
container_title European polymer journal
container_volume 218
creator Rahimi-Ahar, Zohreh
Rahimi Ahar, Leile
description [Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.
doi_str_mv 10.1016/j.eurpolymj.2024.113337
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_eurpolymj_2024_113337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305724005986</els_id><sourcerecordid>S0014305724005986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhH0AiVJ4BvIATdi10zg9VhV_UiUu7dky9lp1lMSRHZD69qQKcOW0syvNaPZj7AGhQMDqsSnoMw6hPXdNwYGXBaIQQl6xBQCWuYC1vGG3KTUAIEUlFux4OFHsdLvKwjB6cxEdmZPuZ209tWTG6M0q073NfjfdZkMMA8XRU8qCy3rdBxO6ISQ_Urpj1063ie5_5pIdn58Ou9d8__7yttvuc4MbHHOLXFpeG6rcZvMB081YqE0NNUrJp7K2Eugsd1zXVKKVGhBltS5NWZJbS7Fkcs41MaQUyakh-k7Hs0JQFyKqUX9E1IWImolMzu3spKnel6eokvHUG7I-Ti8qG_y_Gd8XMXE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><source>ScienceDirect Freedom Collection</source><creator>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</creator><creatorcontrib>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</creatorcontrib><description>[Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</description><identifier>ISSN: 0014-3057</identifier><identifier>DOI: 10.1016/j.eurpolymj.2024.113337</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Electrical properties ; Mechanical properties ; Optical properties ; Thermal properties</subject><ispartof>European polymer journal, 2024-09, Vol.218, p.113337, Article 113337</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</cites><orcidid>0000-0001-6804-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rahimi-Ahar, Zohreh</creatorcontrib><creatorcontrib>Rahimi Ahar, Leile</creatorcontrib><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><title>European polymer journal</title><description>[Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</description><subject>Electrical properties</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Thermal properties</subject><issn>0014-3057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhH0AiVJ4BvIATdi10zg9VhV_UiUu7dky9lp1lMSRHZD69qQKcOW0syvNaPZj7AGhQMDqsSnoMw6hPXdNwYGXBaIQQl6xBQCWuYC1vGG3KTUAIEUlFux4OFHsdLvKwjB6cxEdmZPuZ209tWTG6M0q073NfjfdZkMMA8XRU8qCy3rdBxO6ISQ_Urpj1063ie5_5pIdn58Ou9d8__7yttvuc4MbHHOLXFpeG6rcZvMB081YqE0NNUrJp7K2Eugsd1zXVKKVGhBltS5NWZJbS7Fkcs41MaQUyakh-k7Hs0JQFyKqUX9E1IWImolMzu3spKnel6eokvHUG7I-Ti8qG_y_Gd8XMXE6</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Rahimi-Ahar, Zohreh</creator><creator>Rahimi Ahar, Leile</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6804-9474</orcidid></search><sort><creationdate>20240918</creationdate><title>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</title><author>Rahimi-Ahar, Zohreh ; Rahimi Ahar, Leile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical properties</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimi-Ahar, Zohreh</creatorcontrib><creatorcontrib>Rahimi Ahar, Leile</creatorcontrib><collection>CrossRef</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimi-Ahar, Zohreh</au><au>Rahimi Ahar, Leile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites</atitle><jtitle>European polymer journal</jtitle><date>2024-09-18</date><risdate>2024</risdate><volume>218</volume><spage>113337</spage><pages>113337-</pages><artnum>113337</artnum><issn>0014-3057</issn><abstract>[Display omitted] In this review paper, different nanocomposites are introduced and their performances considering thermal, mechanical, electrical, and optical properties are evaluated. Nanocomposites are prepared using various techniques with different fillers or reinforcing materials. They are classified into metal-based, polymer-based, carbon-based, and epoxy-based nanocomposites. The optimized concentration of nanofillers or nanoparticles in nanocomposite structure and choosing the proper base material strengthens the performance of nanocomposites. The results show that integrating multi-walled carbon nanotubes (2 wt%) to Cu with thermal conductivity of 390 W/m.K, Polyaniline-photoadduct with an electrical conductivity of 3 × 102 S/cm, Polyaniline-NiFe2O4 with an energy band gap of 1 eV, and nitrogen-alloyed Cr with a maximum hardness of 37 GPa and Young’s modulus of 340 GPa can be introduced as best nanocomposites considering their thermal, electrical, optical, and mechanical properties, respectively. The results assist in selecting the appropriate nanocomposite considering their fundamental features for various applications (i.e., fuel cells, photovoltaic-thermal modules, sensors, photocatalysis, aerospace, marine, gas, and oil industries), contributing to a more sustainable and technologically advanced future.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2024.113337</doi><orcidid>https://orcid.org/0000-0001-6804-9474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2024-09, Vol.218, p.113337, Article 113337
issn 0014-3057
language eng
recordid cdi_crossref_primary_10_1016_j_eurpolymj_2024_113337
source ScienceDirect Freedom Collection
subjects Electrical properties
Mechanical properties
Optical properties
Thermal properties
title Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal,%20optical,%20mechanical,%20dielectric,%20and%20electrical%20properties%20of%20nanocomposites&rft.jtitle=European%20polymer%20journal&rft.au=Rahimi-Ahar,%20Zohreh&rft.date=2024-09-18&rft.volume=218&rft.spage=113337&rft.pages=113337-&rft.artnum=113337&rft.issn=0014-3057&rft_id=info:doi/10.1016/j.eurpolymj.2024.113337&rft_dat=%3Celsevier_cross%3ES0014305724005986%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-d127d28ce6f99b0191cd08c8081772057d631fd2f2a8e41d7a0117654c44ef573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true