Loading…
Methodology for the application of velocimetry by molecular tagging of hypersonic flows
A laser-induced NO fluorescence technique was applied to measure velocity in a hypersonic shock tunnel nozzle exit. For the application of the technique, a detailed study of the density and fluorescence lifetime of the tracer radical, flow velocity and effective test time is proposed, resulting in a...
Saved in:
Published in: | Flow measurement and instrumentation 2022-12, Vol.88, p.102265, Article 102265 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A laser-induced NO fluorescence technique was applied to measure velocity in a hypersonic shock tunnel nozzle exit. For the application of the technique, a detailed study of the density and fluorescence lifetime of the tracer radical, flow velocity and effective test time is proposed, resulting in a methodology for the application of the technique in hypersonic pulsed facilities. The study has demonstrated that it is necessary to jointly evaluate the flow velocity, the fluorescence lifetime of the radical and the width at half height of the laser beam, resulting in a kind of indicator for the feasibility of the technique. The variation of the laser incidence time with respect to the Pitot signal showed that it is not enough to select a stable Pitot pressure signal region to define the laser incidence time, preliminary trial and error analysis are necessary for each device used. Furthermore, the analysis of the velocity values calculated from the linear fit method shows that the adoption of such a method eliminates the effect of the systematic error of the measurements.
•We study a detailed procedure to evaluate the feasibility of technique implementation.•The main species parameters are density and fluorescence lifetime.•Tunnel operational range have also to take account. |
---|---|
ISSN: | 0955-5986 1873-6998 |
DOI: | 10.1016/j.flowmeasinst.2022.102265 |