Loading…

Phase behavior of the carbon dioxide/toluene/poly(methyl methacrylate) ternary system

Carbon dioxide/organic polymer/solvent systems have several industrial applications, including supercritical polymerization. Various process parameters affect the phase behavior of these systems, thereby influencing the process design. Accordingly, the phase behavior of a carbon dioxide (CO2)/toluen...

Full description

Saved in:
Bibliographic Details
Published in:Fluid phase equilibria 2024-10, Vol.585, p.114153, Article 114153
Main Authors: Matsukawa, Hiroaki, Tachibana, Takumi, Suzuki, Ryota, Otake, Katsuto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon dioxide/organic polymer/solvent systems have several industrial applications, including supercritical polymerization. Various process parameters affect the phase behavior of these systems, thereby influencing the process design. Accordingly, the phase behavior of a carbon dioxide (CO2)/toluene (Tol)/poly(methyl methacrylate) (PMMA) ternary system was investigated in this study. Measurements were performed using a synthetic method combined with laser displacement and turbidity measurement. Bubble points (vapor–liquid phase separation) were determined from changes in the piston displacement, whereas cloud points (liquid–liquid (LL) phase separation) were determined from changes in the turbidity The phase boundaries of CO2 mass fractions ranging from 0.098 to 0.577 were measured by varying the Tol/PMMA ratio. The homogeneous phase area decreased when the ratio of PMMA to Tol increased, molecular weight of PMMA increased, and/or temperature decreased. These changes in the LL phase separation behavior were explained with reference to the free volume (vf) and solubility parameter (δ) estimated using the Sanchez–Lacombe equation of state. The estimation of vf and δ is expected to be helpful in comprehensively understanding the phase diagram and in predicting the phase behavior of CO2/organic solvent/polymer systems. [Display omitted]
ISSN:0378-3812
1879-0224
DOI:10.1016/j.fluid.2024.114153