Loading…

Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue

Thermal processing for food preservation results in undesired softening of fruits and vegetables. To explore the potential of high pressure sterilization in food processing, the effects of combined high pressure/high temperature (HP/HT) treatments on carrot pectic polysaccharides and the related tex...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2008-04, Vol.107 (3), p.1225-1235
Main Authors: De Roeck, Ans, Sila, Daniel N., Duvetter, Thomas, Van Loey, Ann, Hendrickx, Marc
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal processing for food preservation results in undesired softening of fruits and vegetables. To explore the potential of high pressure sterilization in food processing, the effects of combined high pressure/high temperature (HP/HT) treatments on carrot pectic polysaccharides and the related textural properties were investigated and compared with that of samples thermally processed at atmospheric pressure. Disks of fresh carrot ( Daucus carota var. Yukon) tissue were subjected to three different treatments (80 °C–0.1 MPa, 100 °C–0.1 MPa and 80 °C–600 MPa) for varying time intervals. Subsequently, the residual texture and microstructural changes of the carrots were evaluated. Alcohol-insoluble residues were prepared from the samples and sequentially fractionated with water, cyclohexane-trans-1,2-diamine tetra-acetic acid (CDTA) and Na 2CO 3 solutions. Thermal treatments at 0.1 MPa caused extensive tissue softening. This was marked by increased cell separation, an increase in water soluble pectin (WSP) paralleled by a decrease in chelator (CSP) and sodium carbonate (NSP) soluble pectin. HP/HT treated carrots showed minimal softening and negligible changes in intercellular adhesion. This was accompanied by a significant reduction in the degree of methyl esterification of pectin, low WSP in contrast to the high CSP and NSP fractions, minor changes in the different pectin fractions during treatment, and a substantial amount of pectin in the fractionation residue. There was a clear difference between HP/HT and thermally processed carrot pectin; HP/HT showing pronounced texture preservation.
ISSN:0308-8146
1873-7072
DOI:10.1016/j.foodchem.2007.09.076