Loading…

Protective effects of glutamine against soy saponins-induced enteritis, tight junction disruption, oxidative damage and autophagy in the intestine of Scophthalmus maximus L

Soy saponins, as thermo-stable anti-nutrients in soybean meal (SBM), are the primary causal agents of SBM-induced enteritis, which represents a well-documented pathologic alternation involving the distal intestines of various farmed fish. Our previous work showed that soy saponins might lead to SBM-...

Full description

Saved in:
Bibliographic Details
Published in:Fish & shellfish immunology 2021-07, Vol.114, p.49-57
Main Authors: Gu, Min, Pan, Shihui, Li, Qing, Qi, Zezheng, Deng, Wanzhen, Bai, Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soy saponins, as thermo-stable anti-nutrients in soybean meal (SBM), are the primary causal agents of SBM-induced enteritis, which represents a well-documented pathologic alternation involving the distal intestines of various farmed fish. Our previous work showed that soy saponins might lead to SBM-induced enteritis, destroy tight junction structure and induce oxidative damage in juvenile turbot. Glutamine, as a conditionally essential amino acid, is an important substrate utilized for the growth of intestinal epithelial cells. An 8-week feeding trial was carried out to determine whether glutamine can attenuate the detrimental effects of soy saponins. Three isonitrogenous-isolipidic experimental diets were formulated as follows: (i) fish meal-based diet (FM), considered as control; (ii) FM + 10 g/kg soy saponins, SAP; and (iii) SAP + 15 g/kg glutamine, GLN. The results showed that dietary soy saponins significantly increased the gene expression levels of inflammatory markers (IL-1β, IL-8 and TNF-α) and related signaling factors (NF-кB, AP-1, p38, JNK and ERK), which were remarkably attenuated by dietary glutamine. Compared to SAP group, GLN-fed fish exhibited significantly higher expression levels of tight junction genes (CLDN3, CLDN4, OCLN, Tricellulin and ZO-1). Glutamine supplementation in SAP diet markedly suppressed the production of reactive oxygen species, malondialdehyde and protein carbonyl, and enhanced the activities of antioxidant enzymes as well as the mRNA levels of HO-1, SOD, GPX and Nrf2. Furthermore, GLN-fed fish had a remarkably lower number of autophagosomes compared to SAP-fed fish. In conclusion, our study indicated that glutamine could reverse the harmful effects of soy saponins on intestinal inflammation, tight junction disruption and oxidative damage, via attenuation of NF-кB, AP-1 and MAPK pathways and activation of Nrf2 pathway. Glutamine may have the function of controlling autophaghic process within an appropriate level of encountering inflammation. •Dietary glutamine reversed the harmful effects of soy saponins on turbot intestine.•Soy saponins induced inflammation, tight junction disruption and oxidative damage.•Glutamine and soy saponins could regulate NF-кB, AP-1, MAPK and Nrf2 pathways.•Glutamine has the function to control autophagy within an appropriate level.
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2021.04.013