Loading…
Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction
[Display omitted] Thermochemical methods namely pyrolysis, gasification/hydrothermal gasification, combustion, hydrothermal liquefaction and hydrothermal carbonization are widely practiced to convert algal biomass into fuels. Among the methods, pyrolysis, and hydrothermal liquefaction are most commo...
Saved in:
Published in: | Fuel (Guildford) 2021-02, Vol.285, p.119106, Article 119106 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Thermochemical methods namely pyrolysis, gasification/hydrothermal gasification, combustion, hydrothermal liquefaction and hydrothermal carbonization are widely practiced to convert algal biomass into fuels. Among the methods, pyrolysis, and hydrothermal liquefaction are most commonly practised to convert numerous algal biomasses into bio-oil and/or biochar to substitute crude oil in petroleum refinery. In this regard, this review is focused on the conversion of various microalgal; and cyanobacterial biomasses into bio-oil, and solid char products through pyrolysis and hydrothermal liquefaction. Initially, pyrolysis and hydrothermal liquefaction of algal biomass on bio-oil and biochar yield have been reviewed. As the composition and yield of bio-oil from algae depends on the reaction temperature, detailed account of the impact of temperature on the quantity and quality of bio-oil and solid char obtained from pyrolysis and hydrothermal liquefaction were comprehensively presented in the review. Eventually, this article provides opportunities and scope in the pyrolysis and hydrothermal liquefaction of algae for further research. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2020.119106 |