Loading…
VSA: An offline scheduling analyzer for Xen virtual machine monitor
Nowadays, it is an important trend in the system domain to use the software-based virtualization technology to build the execution environments (e.g., the Clouds). After introducing the virtualization layer, there exist two schedulers: One in the hypervisor and the other inside the Guest Operating S...
Saved in:
Published in: | Future generation computer systems 2013-10, Vol.29 (8), p.2067-2076 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nowadays, it is an important trend in the system domain to use the software-based virtualization technology to build the execution environments (e.g., the Clouds). After introducing the virtualization layer, there exist two schedulers: One in the hypervisor and the other inside the Guest Operating System (GOS). To fully understand the virtualized system and identify the possible reasons for performance problems incurred by the virtualization technology, it is very important for the system administrators and engineers to know the scheduling behavior of the hypervisor, in addition to understanding the scheduler inside the GOS. In this paper, we develop a virtualization scheduling analyzer, called VSA, to analyze the trace data of the Xen virtual machine monitor. With VSA, one can easily obtain the scheduling data associated with virtual processors (i.e., VCPUs) and physical processors (i.e., PCPUs), and further conduct the scheduling analysis for a group of interacting VCPUs running in the same domain.
► Demonstrate the lack of support for advanced scheduling analyses in the existing tools. ► Develop a tool to conduct advance scheduling analyses in virtualized systems. ► Conduct the case studies to demonstrate the effectiveness of the developed tool. |
---|---|
ISSN: | 0167-739X 1872-7115 |
DOI: | 10.1016/j.future.2012.12.004 |