Loading…

Adsorption mechanism of selenium(VI) onto maghemite

In this study, the sorption properties of maghemite (γ-Fe2O3) towards selenium(VI) were studied for the first time both on the macroscopic and the molecular level. Using batch experiments, we found that the retention reaction was very fast. Both increase of pH and ionic strength led to a decrease of...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2013-02, Vol.103, p.63-75
Main Authors: Jordan, N., Ritter, A., Foerstendorf, H., Scheinost, A.C., Weiß, S., Heim, K., Grenzer, J., Mücklich, A., Reuther, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the sorption properties of maghemite (γ-Fe2O3) towards selenium(VI) were studied for the first time both on the macroscopic and the molecular level. Using batch experiments, we found that the retention reaction was very fast. Both increase of pH and ionic strength led to a decrease of selenium(VI) sorption. Electrophoretic mobility measurements showed that selenium(VI) sorption had no significant effect on the isoelectric point of maghemite. These macroscopic results strongly suggested the formation of outer-sphere complexes across the investigated pH range (3.5–8.0). At the molecular level, the structure of the sorbed surface species was elucidated in situ using Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) spectroscopy and Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy. The ATR FT-IR results suggested the formation of outer-sphere complexes showing an unexpected bidentate symmetry, which possibly revealed the lack of accuracy of the actual widely-used classification of inner- and outer-sphere coordination for anionic species. EXAFS results revealed, that in addition to outer-sphere complexes, there is also a small (15%) contribution of an inner-sphere complex in binuclear corner-sharing geometry present.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2012.09.048