Loading…

Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing

Mutton consumption is less popular in many Asian countries including Indonesia, whose consumers often complain about the unpleasant flavour and odour of the meat. The main causes of mutton odour are the two compounds of branched chain fatty acid (BCFA): methylnonanoic (MNA), phenol, 3-methyl (MP), 4...

Full description

Saved in:
Bibliographic Details
Published in:Gene 2018-11, Vol.676, p.86-94
Main Authors: Gunawan, Asep, Jakaria, Listyarini, Kasita, Furqon, Ahmad, Sumantri, Cece, Akter, Syeda Hasina, Uddin, Muhammad Jasim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutton consumption is less popular in many Asian countries including Indonesia, whose consumers often complain about the unpleasant flavour and odour of the meat. The main causes of mutton odour are the two compounds of branched chain fatty acid (BCFA): methylnonanoic (MNA), phenol, 3-methyl (MP), 4-methylnonanoic (MNA) and 4-ethyloctanoic (EOA) present in all the adipose tissue; and the 3-methylindole (MI) or skatole and indole, which are originated from pastoral diets. It is crucial to understand the genetic mechanism of mutton odour and flavour (MOF) to select sheep for lower BCFA and indole thus reduce the unpleasant flavour of meat. The aim of the present study was to investigate transcriptome profiling in liver tissue with divergent MOF using RNA deep sequencing. Liver tissues from higher (n = 3) and lower (n = 3) MOF sheep were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample ranged from 21.37 to 25.37 million. Approximately 103 genes were differentially expressed (DEGs) with significance level of p-adjusted value
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2018.06.086