Loading…

Full-body motion capture for multiple closely interacting persons

[Display omitted] Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a total motion capture of a single person or multiple persons wi...

Full description

Saved in:
Bibliographic Details
Published in:Graphical models 2020-07, Vol.110, p.101072, Article 101072
Main Authors: Li, Kun, Mao, Yali, Liu, Yunke, Shao, Ruizhi, Liu, Yebin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3
cites cdi_FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3
container_end_page
container_issue
container_start_page 101072
container_title Graphical models
container_volume 110
creator Li, Kun
Mao, Yali
Liu, Yunke
Shao, Ruizhi
Liu, Yebin
description [Display omitted] Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a total motion capture of a single person or multiple persons without close interaction. In this paper, we present a fully automatic and effective method to capture full-body human performance including body poses, face poses, hand gestures, and feet orientations for closely interacting multiple persons. We predict 2D keypoints corresponding to the poses of body, face, hands and feet for each person, and associate the same person in multi-view videos by computing personalized appearance descriptors to reduce ambiguities and uncertainties. To deal with occlusions and obtain temporally coherent human shapes, we estimate shape and pose for each person with the spatio-temporal tracking and constraints. Experimental results demonstrate that our method achieves better performance than state-of-the-art methods.
doi_str_mv 10.1016/j.gmod.2020.101072
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_gmod_2020_101072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1524070320300163</els_id><sourcerecordid>S1524070320300163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4Co_MPUlmUlTcFOKtULBja7DJHkpKTOTIUmF_r2tFZeu3uXBuVwOIY8MZgyYfNrPdn10Mw785wFzfkUmrOF1BXPGrv8yiFtyl_MegLGm5hOyXB-6rjLRHWkfS4gDte1YDgmpj4n2h66EsUNqu5ixO9IwFEytLWHY0RFTjkO-Jze-7TI-_N4p-Vy_fKw21fb99W213FZWAJRqYWrjUXDVKMUW6LxEKaxqTQNGNbVHkKJFIWtnrK9h3gorufIglVFOLryYEn7ptSnmnNDrMYW-TUfNQJ8l6L0-S9BnCfoi4QQ9XyA8LfsKmHS2AQeLLiS0RbsY_sO_AaAmZnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Full-body motion capture for multiple closely interacting persons</title><source>ScienceDirect Freedom Collection</source><creator>Li, Kun ; Mao, Yali ; Liu, Yunke ; Shao, Ruizhi ; Liu, Yebin</creator><creatorcontrib>Li, Kun ; Mao, Yali ; Liu, Yunke ; Shao, Ruizhi ; Liu, Yebin</creatorcontrib><description>[Display omitted] Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a total motion capture of a single person or multiple persons without close interaction. In this paper, we present a fully automatic and effective method to capture full-body human performance including body poses, face poses, hand gestures, and feet orientations for closely interacting multiple persons. We predict 2D keypoints corresponding to the poses of body, face, hands and feet for each person, and associate the same person in multi-view videos by computing personalized appearance descriptors to reduce ambiguities and uncertainties. To deal with occlusions and obtain temporally coherent human shapes, we estimate shape and pose for each person with the spatio-temporal tracking and constraints. Experimental results demonstrate that our method achieves better performance than state-of-the-art methods.</description><identifier>ISSN: 1524-0703</identifier><identifier>EISSN: 1524-0711</identifier><identifier>DOI: 10.1016/j.gmod.2020.101072</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Close interaction ; Motion capture ; Multiple persons ; Occlusions ; Spatio-temporal constraints</subject><ispartof>Graphical models, 2020-07, Vol.110, p.101072, Article 101072</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3</citedby><cites>FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3</cites><orcidid>0000-0003-2326-0166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Mao, Yali</creatorcontrib><creatorcontrib>Liu, Yunke</creatorcontrib><creatorcontrib>Shao, Ruizhi</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><title>Full-body motion capture for multiple closely interacting persons</title><title>Graphical models</title><description>[Display omitted] Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a total motion capture of a single person or multiple persons without close interaction. In this paper, we present a fully automatic and effective method to capture full-body human performance including body poses, face poses, hand gestures, and feet orientations for closely interacting multiple persons. We predict 2D keypoints corresponding to the poses of body, face, hands and feet for each person, and associate the same person in multi-view videos by computing personalized appearance descriptors to reduce ambiguities and uncertainties. To deal with occlusions and obtain temporally coherent human shapes, we estimate shape and pose for each person with the spatio-temporal tracking and constraints. Experimental results demonstrate that our method achieves better performance than state-of-the-art methods.</description><subject>Close interaction</subject><subject>Motion capture</subject><subject>Multiple persons</subject><subject>Occlusions</subject><subject>Spatio-temporal constraints</subject><issn>1524-0703</issn><issn>1524-0711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKs_4Co_MPUlmUlTcFOKtULBja7DJHkpKTOTIUmF_r2tFZeu3uXBuVwOIY8MZgyYfNrPdn10Mw785wFzfkUmrOF1BXPGrv8yiFtyl_MegLGm5hOyXB-6rjLRHWkfS4gDte1YDgmpj4n2h66EsUNqu5ixO9IwFEytLWHY0RFTjkO-Jze-7TI-_N4p-Vy_fKw21fb99W213FZWAJRqYWrjUXDVKMUW6LxEKaxqTQNGNbVHkKJFIWtnrK9h3gorufIglVFOLryYEn7ptSnmnNDrMYW-TUfNQJ8l6L0-S9BnCfoi4QQ9XyA8LfsKmHS2AQeLLiS0RbsY_sO_AaAmZnE</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Li, Kun</creator><creator>Mao, Yali</creator><creator>Liu, Yunke</creator><creator>Shao, Ruizhi</creator><creator>Liu, Yebin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2326-0166</orcidid></search><sort><creationdate>202007</creationdate><title>Full-body motion capture for multiple closely interacting persons</title><author>Li, Kun ; Mao, Yali ; Liu, Yunke ; Shao, Ruizhi ; Liu, Yebin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Close interaction</topic><topic>Motion capture</topic><topic>Multiple persons</topic><topic>Occlusions</topic><topic>Spatio-temporal constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Mao, Yali</creatorcontrib><creatorcontrib>Liu, Yunke</creatorcontrib><creatorcontrib>Shao, Ruizhi</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><collection>CrossRef</collection><jtitle>Graphical models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kun</au><au>Mao, Yali</au><au>Liu, Yunke</au><au>Shao, Ruizhi</au><au>Liu, Yebin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-body motion capture for multiple closely interacting persons</atitle><jtitle>Graphical models</jtitle><date>2020-07</date><risdate>2020</risdate><volume>110</volume><spage>101072</spage><pages>101072-</pages><artnum>101072</artnum><issn>1524-0703</issn><eissn>1524-0711</eissn><abstract>[Display omitted] Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a total motion capture of a single person or multiple persons without close interaction. In this paper, we present a fully automatic and effective method to capture full-body human performance including body poses, face poses, hand gestures, and feet orientations for closely interacting multiple persons. We predict 2D keypoints corresponding to the poses of body, face, hands and feet for each person, and associate the same person in multi-view videos by computing personalized appearance descriptors to reduce ambiguities and uncertainties. To deal with occlusions and obtain temporally coherent human shapes, we estimate shape and pose for each person with the spatio-temporal tracking and constraints. Experimental results demonstrate that our method achieves better performance than state-of-the-art methods.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.gmod.2020.101072</doi><orcidid>https://orcid.org/0000-0003-2326-0166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-0703
ispartof Graphical models, 2020-07, Vol.110, p.101072, Article 101072
issn 1524-0703
1524-0711
language eng
recordid cdi_crossref_primary_10_1016_j_gmod_2020_101072
source ScienceDirect Freedom Collection
subjects Close interaction
Motion capture
Multiple persons
Occlusions
Spatio-temporal constraints
title Full-body motion capture for multiple closely interacting persons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-body%20motion%20capture%20for%20multiple%20closely%20interacting%20persons&rft.jtitle=Graphical%20models&rft.au=Li,%20Kun&rft.date=2020-07&rft.volume=110&rft.spage=101072&rft.pages=101072-&rft.artnum=101072&rft.issn=1524-0703&rft.eissn=1524-0711&rft_id=info:doi/10.1016/j.gmod.2020.101072&rft_dat=%3Celsevier_cross%3ES1524070320300163%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-9b4bfe32858819edf6e63c8ab50b854fe063ae364dbcf407a3c628f068b8d69f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true