Loading…

The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent

The Xiong'er volcanic belt, covering an area of more than 60,000 km 2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the...

Full description

Saved in:
Bibliographic Details
Published in:Gondwana research 2009-10, Vol.16 (2), p.170-181
Main Authors: Zhao, Guochun, He, Yanhong, Sun, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Xiong'er volcanic belt, covering an area of more than 60,000 km 2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H 2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the no
ISSN:1342-937X
1878-0571
DOI:10.1016/j.gr.2009.02.004