Loading…
Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new...
Saved in:
Published in: | Gondwana research 2019-12, Vol.76, p.290-302 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.
[Display omitted]
•Syenites originated from fractional crystallization from Tarim plume-derived melt.•Granites were formed from mixing of mantle- with crust-derived melts.•Felsic intrusions in Tarim LIP record crustal melting above the Tarim mantle plume. |
---|---|
ISSN: | 1342-937X 1878-0571 |
DOI: | 10.1016/j.gr.2019.06.015 |