Loading…

Creation of a homogeneous plasma column by means of hohlraum radiation for ion-stopping measurements

In this work, we present the results of two-dimensional radiation-hydrodynamics simulations of a hohlraum target whose outgoing radiation is used to produce a homogeneously ionized carbon plasma for ion-beam stopping measurements. The cylindrical hohlraum with gold walls is heated by a frequency-dou...

Full description

Saved in:
Bibliographic Details
Published in:High energy density physics 2014-03, Vol.10, p.47-55
Main Authors: Faik, Steffen, Tauschwitz, Anna, Basko, Mikhail M., Maruhn, Joachim A., Rosmej, Olga, Rienecker, Tim, Novikov, Vladimir G., Grushin, Alexander S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we present the results of two-dimensional radiation-hydrodynamics simulations of a hohlraum target whose outgoing radiation is used to produce a homogeneously ionized carbon plasma for ion-beam stopping measurements. The cylindrical hohlraum with gold walls is heated by a frequency-doubled (λl = 526.5 μm) 1.4 ns long laser pulse with the total energy of El = 180  J. At the laser spot, the peak matter and radiation temperatures of, respectively, T ≈ 380 eV and Tr ≈ 120 eV are observed. X-rays from the hohlraum heat the attached carbon foam with a mean density of ρC = 2 mg/cm3 to a temperature of T ≈ 25 eV. The simulation shows that the carbon ionization degree (Z ≈ 3.75) and its column density stay relatively stable (within variations of about ±7%) long enough to conduct the ion-stopping measurements. Also, it is found that a special attention should be paid to the shock wave, emerging from the X-ray heated copper support plate, which at later times may significantly distort the carbon column density traversed by the fast ions.
ISSN:1574-1818
1878-0563
DOI:10.1016/j.hedp.2013.10.002