Loading…

Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system

Many metal refining processes generate low-grade mineral residues that are typically stored on landfills and responsible for inefficient land-use. While being of environmental concern, residual metals contained in these wastes can become an interesting secondary resource. A novel bio-hydrometallurgi...

Full description

Saved in:
Bibliographic Details
Published in:Hydrometallurgy 2020-08, Vol.195, p.105409, Article 105409
Main Authors: Williamson, Adam J., Folens, Karel, Van Damme, Kylian, Olaoye, Oludotun, Abo Atia, Thomas, Mees, Bernd, Nicomel, Nina Ricci, Verbruggen, Florian, Spooren, Jeroen, Boon, Nico, Hennebel, Tom, Du Laing, Gijs
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73
cites cdi_FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73
container_end_page
container_issue
container_start_page 105409
container_title Hydrometallurgy
container_volume 195
creator Williamson, Adam J.
Folens, Karel
Van Damme, Kylian
Olaoye, Oludotun
Abo Atia, Thomas
Mees, Bernd
Nicomel, Nina Ricci
Verbruggen, Florian
Spooren, Jeroen
Boon, Nico
Hennebel, Tom
Du Laing, Gijs
description Many metal refining processes generate low-grade mineral residues that are typically stored on landfills and responsible for inefficient land-use. While being of environmental concern, residual metals contained in these wastes can become an interesting secondary resource. A novel bio-hydrometallurgical route for recovery of Zn from such waste residues to a highly pure resource is proposed. The use of microbiologically produced citric acid for extraction of Zn was optimized by varying the lixiviant pH and contact time so to achieve maximal Zn recovery against minimal co-extraction of Fe. Bioleaching with 0.2 M citric acid at pH 2.9 can extract 12.5 mg g−1 Zn from the iron oxide residue. Compared to inorganic acids commonly used in extraction and non-microbially produced citric acid, almost no iron was dissolved by the biogenic extractant. Hence, optimal selectivity in favor of Zn was achieved, especially at short contact times. Integration of bioleaching in a continuous percolating column to a coupled electrodialysis system could subsequently separate Zn from the leachate solution to a purity of 76 m%. [Display omitted] •Low-grade refining residues served as source for sustainable metal extraction.•A continuous bio-leaching process is shown for selective zinc recovery.•The coupled electro-dialysis system can simultaneously separate zinc in high purity.•Re-use of zinc, lixiviant and the clean bulk solid lowers environmental impact.
doi_str_mv 10.1016/j.hydromet.2020.105409
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_hydromet_2020_105409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304386X19310096</els_id><sourcerecordid>S0304386X19310096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI6-guQFOubSS7pTBm8guFFwF9Lk1DmlTYakM1if3g6ja1cHfs5_4SPkmrMVZ7y86VabycUwwLgSTBzEImf1CVlwVdUZ54U6JQsmWZ5JVX6ck4uUOsZYKSu-INt18F1AP9IGQw_GbtB_UuMd_UZvaQQb9hAn2s4Fs0wxBk_DFzqgA3qIpp9_Erod0GaihtrgR_S7sEsUerBjDA5NPyVMNE1phOGSnLWmT3D1e5fk_eH-bf2Uvbw-Pq_vXjIruRgzbuaJlaosE6atmCo45EZZKVVtlavLxlnBpLLWMqNaEC1XeVkVwkleCt5UcknKY66NIaUIrd5GHEycNGf6wE13-o-bPnDTR26z8fZohHndHiHqZBG8BYczjVG7gP9F_ADv_Xy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system</title><source>ScienceDirect Journals</source><creator>Williamson, Adam J. ; Folens, Karel ; Van Damme, Kylian ; Olaoye, Oludotun ; Abo Atia, Thomas ; Mees, Bernd ; Nicomel, Nina Ricci ; Verbruggen, Florian ; Spooren, Jeroen ; Boon, Nico ; Hennebel, Tom ; Du Laing, Gijs</creator><creatorcontrib>Williamson, Adam J. ; Folens, Karel ; Van Damme, Kylian ; Olaoye, Oludotun ; Abo Atia, Thomas ; Mees, Bernd ; Nicomel, Nina Ricci ; Verbruggen, Florian ; Spooren, Jeroen ; Boon, Nico ; Hennebel, Tom ; Du Laing, Gijs</creatorcontrib><description>Many metal refining processes generate low-grade mineral residues that are typically stored on landfills and responsible for inefficient land-use. While being of environmental concern, residual metals contained in these wastes can become an interesting secondary resource. A novel bio-hydrometallurgical route for recovery of Zn from such waste residues to a highly pure resource is proposed. The use of microbiologically produced citric acid for extraction of Zn was optimized by varying the lixiviant pH and contact time so to achieve maximal Zn recovery against minimal co-extraction of Fe. Bioleaching with 0.2 M citric acid at pH 2.9 can extract 12.5 mg g−1 Zn from the iron oxide residue. Compared to inorganic acids commonly used in extraction and non-microbially produced citric acid, almost no iron was dissolved by the biogenic extractant. Hence, optimal selectivity in favor of Zn was achieved, especially at short contact times. Integration of bioleaching in a continuous percolating column to a coupled electrodialysis system could subsequently separate Zn from the leachate solution to a purity of 76 m%. [Display omitted] •Low-grade refining residues served as source for sustainable metal extraction.•A continuous bio-leaching process is shown for selective zinc recovery.•The coupled electro-dialysis system can simultaneously separate zinc in high purity.•Re-use of zinc, lixiviant and the clean bulk solid lowers environmental impact.</description><identifier>ISSN: 0304-386X</identifier><identifier>EISSN: 1879-1158</identifier><identifier>DOI: 10.1016/j.hydromet.2020.105409</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bioleaching ; Electrodialysis ; Metal leaching ; Resource recovery ; Zinc refining</subject><ispartof>Hydrometallurgy, 2020-08, Vol.195, p.105409, Article 105409</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73</citedby><cites>FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Williamson, Adam J.</creatorcontrib><creatorcontrib>Folens, Karel</creatorcontrib><creatorcontrib>Van Damme, Kylian</creatorcontrib><creatorcontrib>Olaoye, Oludotun</creatorcontrib><creatorcontrib>Abo Atia, Thomas</creatorcontrib><creatorcontrib>Mees, Bernd</creatorcontrib><creatorcontrib>Nicomel, Nina Ricci</creatorcontrib><creatorcontrib>Verbruggen, Florian</creatorcontrib><creatorcontrib>Spooren, Jeroen</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><creatorcontrib>Hennebel, Tom</creatorcontrib><creatorcontrib>Du Laing, Gijs</creatorcontrib><title>Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system</title><title>Hydrometallurgy</title><description>Many metal refining processes generate low-grade mineral residues that are typically stored on landfills and responsible for inefficient land-use. While being of environmental concern, residual metals contained in these wastes can become an interesting secondary resource. A novel bio-hydrometallurgical route for recovery of Zn from such waste residues to a highly pure resource is proposed. The use of microbiologically produced citric acid for extraction of Zn was optimized by varying the lixiviant pH and contact time so to achieve maximal Zn recovery against minimal co-extraction of Fe. Bioleaching with 0.2 M citric acid at pH 2.9 can extract 12.5 mg g−1 Zn from the iron oxide residue. Compared to inorganic acids commonly used in extraction and non-microbially produced citric acid, almost no iron was dissolved by the biogenic extractant. Hence, optimal selectivity in favor of Zn was achieved, especially at short contact times. Integration of bioleaching in a continuous percolating column to a coupled electrodialysis system could subsequently separate Zn from the leachate solution to a purity of 76 m%. [Display omitted] •Low-grade refining residues served as source for sustainable metal extraction.•A continuous bio-leaching process is shown for selective zinc recovery.•The coupled electro-dialysis system can simultaneously separate zinc in high purity.•Re-use of zinc, lixiviant and the clean bulk solid lowers environmental impact.</description><subject>Bioleaching</subject><subject>Electrodialysis</subject><subject>Metal leaching</subject><subject>Resource recovery</subject><subject>Zinc refining</subject><issn>0304-386X</issn><issn>1879-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI6-guQFOubSS7pTBm8guFFwF9Lk1DmlTYakM1if3g6ja1cHfs5_4SPkmrMVZ7y86VabycUwwLgSTBzEImf1CVlwVdUZ54U6JQsmWZ5JVX6ck4uUOsZYKSu-INt18F1AP9IGQw_GbtB_UuMd_UZvaQQb9hAn2s4Fs0wxBk_DFzqgA3qIpp9_Erod0GaihtrgR_S7sEsUerBjDA5NPyVMNE1phOGSnLWmT3D1e5fk_eH-bf2Uvbw-Pq_vXjIruRgzbuaJlaosE6atmCo45EZZKVVtlavLxlnBpLLWMqNaEC1XeVkVwkleCt5UcknKY66NIaUIrd5GHEycNGf6wE13-o-bPnDTR26z8fZohHndHiHqZBG8BYczjVG7gP9F_ADv_Xy8</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Williamson, Adam J.</creator><creator>Folens, Karel</creator><creator>Van Damme, Kylian</creator><creator>Olaoye, Oludotun</creator><creator>Abo Atia, Thomas</creator><creator>Mees, Bernd</creator><creator>Nicomel, Nina Ricci</creator><creator>Verbruggen, Florian</creator><creator>Spooren, Jeroen</creator><creator>Boon, Nico</creator><creator>Hennebel, Tom</creator><creator>Du Laing, Gijs</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202008</creationdate><title>Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system</title><author>Williamson, Adam J. ; Folens, Karel ; Van Damme, Kylian ; Olaoye, Oludotun ; Abo Atia, Thomas ; Mees, Bernd ; Nicomel, Nina Ricci ; Verbruggen, Florian ; Spooren, Jeroen ; Boon, Nico ; Hennebel, Tom ; Du Laing, Gijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioleaching</topic><topic>Electrodialysis</topic><topic>Metal leaching</topic><topic>Resource recovery</topic><topic>Zinc refining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, Adam J.</creatorcontrib><creatorcontrib>Folens, Karel</creatorcontrib><creatorcontrib>Van Damme, Kylian</creatorcontrib><creatorcontrib>Olaoye, Oludotun</creatorcontrib><creatorcontrib>Abo Atia, Thomas</creatorcontrib><creatorcontrib>Mees, Bernd</creatorcontrib><creatorcontrib>Nicomel, Nina Ricci</creatorcontrib><creatorcontrib>Verbruggen, Florian</creatorcontrib><creatorcontrib>Spooren, Jeroen</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><creatorcontrib>Hennebel, Tom</creatorcontrib><creatorcontrib>Du Laing, Gijs</creatorcontrib><collection>CrossRef</collection><jtitle>Hydrometallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, Adam J.</au><au>Folens, Karel</au><au>Van Damme, Kylian</au><au>Olaoye, Oludotun</au><au>Abo Atia, Thomas</au><au>Mees, Bernd</au><au>Nicomel, Nina Ricci</au><au>Verbruggen, Florian</au><au>Spooren, Jeroen</au><au>Boon, Nico</au><au>Hennebel, Tom</au><au>Du Laing, Gijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system</atitle><jtitle>Hydrometallurgy</jtitle><date>2020-08</date><risdate>2020</risdate><volume>195</volume><spage>105409</spage><pages>105409-</pages><artnum>105409</artnum><issn>0304-386X</issn><eissn>1879-1158</eissn><abstract>Many metal refining processes generate low-grade mineral residues that are typically stored on landfills and responsible for inefficient land-use. While being of environmental concern, residual metals contained in these wastes can become an interesting secondary resource. A novel bio-hydrometallurgical route for recovery of Zn from such waste residues to a highly pure resource is proposed. The use of microbiologically produced citric acid for extraction of Zn was optimized by varying the lixiviant pH and contact time so to achieve maximal Zn recovery against minimal co-extraction of Fe. Bioleaching with 0.2 M citric acid at pH 2.9 can extract 12.5 mg g−1 Zn from the iron oxide residue. Compared to inorganic acids commonly used in extraction and non-microbially produced citric acid, almost no iron was dissolved by the biogenic extractant. Hence, optimal selectivity in favor of Zn was achieved, especially at short contact times. Integration of bioleaching in a continuous percolating column to a coupled electrodialysis system could subsequently separate Zn from the leachate solution to a purity of 76 m%. [Display omitted] •Low-grade refining residues served as source for sustainable metal extraction.•A continuous bio-leaching process is shown for selective zinc recovery.•The coupled electro-dialysis system can simultaneously separate zinc in high purity.•Re-use of zinc, lixiviant and the clean bulk solid lowers environmental impact.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.hydromet.2020.105409</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-386X
ispartof Hydrometallurgy, 2020-08, Vol.195, p.105409, Article 105409
issn 0304-386X
1879-1158
language eng
recordid cdi_crossref_primary_10_1016_j_hydromet_2020_105409
source ScienceDirect Journals
subjects Bioleaching
Electrodialysis
Metal leaching
Resource recovery
Zinc refining
title Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjoint%20bioleaching%20and%20zinc%20recovery%20from%20an%20iron%20oxide%20mineral%20residue%20by%20a%20continuous%20electrodialysis%20system&rft.jtitle=Hydrometallurgy&rft.au=Williamson,%20Adam%20J.&rft.date=2020-08&rft.volume=195&rft.spage=105409&rft.pages=105409-&rft.artnum=105409&rft.issn=0304-386X&rft.eissn=1879-1158&rft_id=info:doi/10.1016/j.hydromet.2020.105409&rft_dat=%3Celsevier_cross%3ES0304386X19310096%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-1a000787c02af70851e4a8c3389c8d96bdc2038ccc0a8fe2f1846752d31621b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true