Loading…

Extremal synchronizing circular automata

An n-state synchronizing automaton is said to be extremal if it has the reset threshold (n−1)2. An extremal synchronizing automaton is specially called an extreme synchronizing automaton if it is no longer an extremal synchronizing automaton after the removal of at least one letter. The Černý automa...

Full description

Saved in:
Bibliographic Details
Published in:Information and computation 2021-12, Vol.281, p.104817, Article 104817
Main Authors: He, Yong, Chen, Xueping, Li, Gang, Sun, Shiyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c177t-3f75491667c23004a3ba67ef082de7fea51c37935e1a01e45483f1c8b5942aec3
container_end_page
container_issue
container_start_page 104817
container_title Information and computation
container_volume 281
creator He, Yong
Chen, Xueping
Li, Gang
Sun, Shiyuan
description An n-state synchronizing automaton is said to be extremal if it has the reset threshold (n−1)2. An extremal synchronizing automaton is specially called an extreme synchronizing automaton if it is no longer an extremal synchronizing automaton after the removal of at least one letter. The Černý automata provide an infinite sequence of extreme synchronizing automata. Besides this, up to isomorphism, only eight isolated examples of extreme synchronizing automata on at least three states have been found. Since the Černý automata and one of the eight isolated examples are circular, one may say that almost all known extreme synchronizing automata are circular. In 2006, Trahtman conjectured that no other extreme synchronizing automaton on at least three states exists. In this paper, all extremal synchronizing circular automata and all extreme synchronizing circular automata are determined. As a consequence, Trahtman's conjecture is confirmed for circular automata.
doi_str_mv 10.1016/j.ic.2021.104817
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ic_2021_104817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540121001474</els_id><sourcerecordid>S0890540121001474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-3f75491667c23004a3ba67ef082de7fea51c37935e1a01e45483f1c8b5942aec3</originalsourceid><addsrcrecordid>eNp1j7tOw0AQRVcIJEKgp0xJYzOzD69Nh6LwkCLRQL3ajMewVmKjXQcRvh5HpqWaO8W5ukeIa4QcAYvbNg-US5A4vrpEeyJmCBVksjB4KmZQjtlowHNxkVILgGh0MRM3q-8h8s5vF-nQ0Ufsu_ATuvcFhUj7rY8Lvx_6nR_8pThr_Dbx1d-di7eH1evyKVu_PD4v79cZobVDphprdIVFYUkqAO3VxheWGyhlzbZhb5CUrZRh9ICsjS5Vg1RuTKWlZ1JzAVMvxT6lyI37jGHn48EhuKOpa10gdzR1k-mI3E0Ij7u-AkeXKHBHXIfINLi6D__Dv2IUWds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extremal synchronizing circular automata</title><source>ScienceDirect Journals</source><creator>He, Yong ; Chen, Xueping ; Li, Gang ; Sun, Shiyuan</creator><creatorcontrib>He, Yong ; Chen, Xueping ; Li, Gang ; Sun, Shiyuan</creatorcontrib><description>An n-state synchronizing automaton is said to be extremal if it has the reset threshold (n−1)2. An extremal synchronizing automaton is specially called an extreme synchronizing automaton if it is no longer an extremal synchronizing automaton after the removal of at least one letter. The Černý automata provide an infinite sequence of extreme synchronizing automata. Besides this, up to isomorphism, only eight isolated examples of extreme synchronizing automata on at least three states have been found. Since the Černý automata and one of the eight isolated examples are circular, one may say that almost all known extreme synchronizing automata are circular. In 2006, Trahtman conjectured that no other extreme synchronizing automaton on at least three states exists. In this paper, all extremal synchronizing circular automata and all extreme synchronizing circular automata are determined. As a consequence, Trahtman's conjecture is confirmed for circular automata.</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1016/j.ic.2021.104817</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Augmented state ; Characteristic group ; Defected state ; Skipped state ; Uncoupling letter</subject><ispartof>Information and computation, 2021-12, Vol.281, p.104817, Article 104817</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-3f75491667c23004a3ba67ef082de7fea51c37935e1a01e45483f1c8b5942aec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Sun, Shiyuan</creatorcontrib><title>Extremal synchronizing circular automata</title><title>Information and computation</title><description>An n-state synchronizing automaton is said to be extremal if it has the reset threshold (n−1)2. An extremal synchronizing automaton is specially called an extreme synchronizing automaton if it is no longer an extremal synchronizing automaton after the removal of at least one letter. The Černý automata provide an infinite sequence of extreme synchronizing automata. Besides this, up to isomorphism, only eight isolated examples of extreme synchronizing automata on at least three states have been found. Since the Černý automata and one of the eight isolated examples are circular, one may say that almost all known extreme synchronizing automata are circular. In 2006, Trahtman conjectured that no other extreme synchronizing automaton on at least three states exists. In this paper, all extremal synchronizing circular automata and all extreme synchronizing circular automata are determined. As a consequence, Trahtman's conjecture is confirmed for circular automata.</description><subject>Augmented state</subject><subject>Characteristic group</subject><subject>Defected state</subject><subject>Skipped state</subject><subject>Uncoupling letter</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j7tOw0AQRVcIJEKgp0xJYzOzD69Nh6LwkCLRQL3ajMewVmKjXQcRvh5HpqWaO8W5ukeIa4QcAYvbNg-US5A4vrpEeyJmCBVksjB4KmZQjtlowHNxkVILgGh0MRM3q-8h8s5vF-nQ0Ufsu_ATuvcFhUj7rY8Lvx_6nR_8pThr_Dbx1d-di7eH1evyKVu_PD4v79cZobVDphprdIVFYUkqAO3VxheWGyhlzbZhb5CUrZRh9ICsjS5Vg1RuTKWlZ1JzAVMvxT6lyI37jGHn48EhuKOpa10gdzR1k-mI3E0Ij7u-AkeXKHBHXIfINLi6D__Dv2IUWds</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>He, Yong</creator><creator>Chen, Xueping</creator><creator>Li, Gang</creator><creator>Sun, Shiyuan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202112</creationdate><title>Extremal synchronizing circular automata</title><author>He, Yong ; Chen, Xueping ; Li, Gang ; Sun, Shiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-3f75491667c23004a3ba67ef082de7fea51c37935e1a01e45483f1c8b5942aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmented state</topic><topic>Characteristic group</topic><topic>Defected state</topic><topic>Skipped state</topic><topic>Uncoupling letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Sun, Shiyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yong</au><au>Chen, Xueping</au><au>Li, Gang</au><au>Sun, Shiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal synchronizing circular automata</atitle><jtitle>Information and computation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>281</volume><spage>104817</spage><pages>104817-</pages><artnum>104817</artnum><issn>0890-5401</issn><eissn>1090-2651</eissn><abstract>An n-state synchronizing automaton is said to be extremal if it has the reset threshold (n−1)2. An extremal synchronizing automaton is specially called an extreme synchronizing automaton if it is no longer an extremal synchronizing automaton after the removal of at least one letter. The Černý automata provide an infinite sequence of extreme synchronizing automata. Besides this, up to isomorphism, only eight isolated examples of extreme synchronizing automata on at least three states have been found. Since the Černý automata and one of the eight isolated examples are circular, one may say that almost all known extreme synchronizing automata are circular. In 2006, Trahtman conjectured that no other extreme synchronizing automaton on at least three states exists. In this paper, all extremal synchronizing circular automata and all extreme synchronizing circular automata are determined. As a consequence, Trahtman's conjecture is confirmed for circular automata.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ic.2021.104817</doi></addata></record>
fulltext fulltext
identifier ISSN: 0890-5401
ispartof Information and computation, 2021-12, Vol.281, p.104817, Article 104817
issn 0890-5401
1090-2651
language eng
recordid cdi_crossref_primary_10_1016_j_ic_2021_104817
source ScienceDirect Journals
subjects Augmented state
Characteristic group
Defected state
Skipped state
Uncoupling letter
title Extremal synchronizing circular automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20synchronizing%20circular%20automata&rft.jtitle=Information%20and%20computation&rft.au=He,%20Yong&rft.date=2021-12&rft.volume=281&rft.spage=104817&rft.pages=104817-&rft.artnum=104817&rft.issn=0890-5401&rft.eissn=1090-2651&rft_id=info:doi/10.1016/j.ic.2021.104817&rft_dat=%3Celsevier_cross%3ES0890540121001474%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c177t-3f75491667c23004a3ba67ef082de7fea51c37935e1a01e45483f1c8b5942aec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true