Loading…
The stability of unevenly spaced planetary systems
Studying the orbital stability of multi-planet systems is essential to understand planet formation, estimate the stable time of an observed planetary system, and advance population synthesis models. Although previous studies have primarily focused on ideal systems characterized by uniform orbital se...
Saved in:
Published in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2023-12, Vol.406, p.115757, Article 115757 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-76c303b00528da00032dd7a5b5b24e6d912819e9801b3a897ec5154987d58a443 |
container_end_page | |
container_issue | |
container_start_page | 115757 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 406 |
creator | Yang, Sheng Wu, Liangyu Zheng, Zekai Ogihara, Masahiro Guo, Kangrou Ouyang, Wenzhan He, Yaxing |
description | Studying the orbital stability of multi-planet systems is essential to understand planet formation, estimate the stable time of an observed planetary system, and advance population synthesis models. Although previous studies have primarily focused on ideal systems characterized by uniform orbital separations, in reality a diverse range of orbital separations exists among planets within the same system. This study focuses on investigating the dynamical stability of systems with non-uniform separation. We considered a system with 10 planets with masses of 10−7 solar masses around a central star with a mass of 1 solar mass. We performed more than 100,000 runs of N-body simulations with different parameters. Results demonstrate that reducing merely one pair of planetary spacing leads to an order of magnitude shorter orbital crossing times that could be formulated based on the Keplerian periods of the closest separation pair. Furthermore, the first collisions are found to be closely associated with the first encounter pair that is likely to be the closest separation pair initially. We conclude that when estimating the orbital crossing time and colliding pairs in a realistic situation, updating the formula derived for evenly spaced systems would be necessary.
•Orbital stability time is shorter in systems with pairs with short separation.•Care must be taken when applying orbital crossing times to actual systems.•First close encounters or collisions are correlated with the closest separation pair. |
doi_str_mv | 10.1016/j.icarus.2023.115757 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_icarus_2023_115757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103523003342</els_id><sourcerecordid>S0019103523003342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-76c303b00528da00032dd7a5b5b24e6d912819e9801b3a897ec5154987d58a443</originalsourceid><addsrcrecordid>eNp9j8tqwzAQRUVpoWnaP-jCP2B3RrJsaVMooS8IdJOuhSyNqYLjBMkJ5O-r4K67unDhPg5jjwgVAjZP2yo4G4-p4sBFhShb2V6xBYKGkje1uGYLANQlgpC37C6lLQBIpcWC8c0PFWmyXRjCdC72fXEc6UTjcC7SwTryxWGwI002ZuOcJtqle3bT2yHRw58u2ffb62b1Ua6_3j9XL-vScSmnsm2cANHlIa68zYOCe99a2cmO19R4jVyhJq0AO2GVbslJlLVWrZfK1rVYsnrudXGfUqTeHGLY5SMGwVy4zdbM3ObCbWbuHHueY5S_nQJFk1ygMaOESG4yfh_-L_gFhLBh5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The stability of unevenly spaced planetary systems</title><source>Elsevier</source><creator>Yang, Sheng ; Wu, Liangyu ; Zheng, Zekai ; Ogihara, Masahiro ; Guo, Kangrou ; Ouyang, Wenzhan ; He, Yaxing</creator><creatorcontrib>Yang, Sheng ; Wu, Liangyu ; Zheng, Zekai ; Ogihara, Masahiro ; Guo, Kangrou ; Ouyang, Wenzhan ; He, Yaxing</creatorcontrib><description>Studying the orbital stability of multi-planet systems is essential to understand planet formation, estimate the stable time of an observed planetary system, and advance population synthesis models. Although previous studies have primarily focused on ideal systems characterized by uniform orbital separations, in reality a diverse range of orbital separations exists among planets within the same system. This study focuses on investigating the dynamical stability of systems with non-uniform separation. We considered a system with 10 planets with masses of 10−7 solar masses around a central star with a mass of 1 solar mass. We performed more than 100,000 runs of N-body simulations with different parameters. Results demonstrate that reducing merely one pair of planetary spacing leads to an order of magnitude shorter orbital crossing times that could be formulated based on the Keplerian periods of the closest separation pair. Furthermore, the first collisions are found to be closely associated with the first encounter pair that is likely to be the closest separation pair initially. We conclude that when estimating the orbital crossing time and colliding pairs in a realistic situation, updating the formula derived for evenly spaced systems would be necessary.
•Orbital stability time is shorter in systems with pairs with short separation.•Care must be taken when applying orbital crossing times to actual systems.•First close encounters or collisions are correlated with the closest separation pair.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2023.115757</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Celestial mechanics ; Planetary dynamics ; Planetary formation</subject><ispartof>Icarus (New York, N.Y. 1962), 2023-12, Vol.406, p.115757, Article 115757</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-76c303b00528da00032dd7a5b5b24e6d912819e9801b3a897ec5154987d58a443</cites><orcidid>0000-0001-6870-3114 ; 0000-0001-5264-1924 ; 0009-0002-6630-3189 ; 0009-0004-2783-7377 ; 0000-0003-0483-5251 ; 0000-0002-8300-7990 ; 0009-0003-2402-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wu, Liangyu</creatorcontrib><creatorcontrib>Zheng, Zekai</creatorcontrib><creatorcontrib>Ogihara, Masahiro</creatorcontrib><creatorcontrib>Guo, Kangrou</creatorcontrib><creatorcontrib>Ouyang, Wenzhan</creatorcontrib><creatorcontrib>He, Yaxing</creatorcontrib><title>The stability of unevenly spaced planetary systems</title><title>Icarus (New York, N.Y. 1962)</title><description>Studying the orbital stability of multi-planet systems is essential to understand planet formation, estimate the stable time of an observed planetary system, and advance population synthesis models. Although previous studies have primarily focused on ideal systems characterized by uniform orbital separations, in reality a diverse range of orbital separations exists among planets within the same system. This study focuses on investigating the dynamical stability of systems with non-uniform separation. We considered a system with 10 planets with masses of 10−7 solar masses around a central star with a mass of 1 solar mass. We performed more than 100,000 runs of N-body simulations with different parameters. Results demonstrate that reducing merely one pair of planetary spacing leads to an order of magnitude shorter orbital crossing times that could be formulated based on the Keplerian periods of the closest separation pair. Furthermore, the first collisions are found to be closely associated with the first encounter pair that is likely to be the closest separation pair initially. We conclude that when estimating the orbital crossing time and colliding pairs in a realistic situation, updating the formula derived for evenly spaced systems would be necessary.
•Orbital stability time is shorter in systems with pairs with short separation.•Care must be taken when applying orbital crossing times to actual systems.•First close encounters or collisions are correlated with the closest separation pair.</description><subject>Celestial mechanics</subject><subject>Planetary dynamics</subject><subject>Planetary formation</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8tqwzAQRUVpoWnaP-jCP2B3RrJsaVMooS8IdJOuhSyNqYLjBMkJ5O-r4K67unDhPg5jjwgVAjZP2yo4G4-p4sBFhShb2V6xBYKGkje1uGYLANQlgpC37C6lLQBIpcWC8c0PFWmyXRjCdC72fXEc6UTjcC7SwTryxWGwI002ZuOcJtqle3bT2yHRw58u2ffb62b1Ua6_3j9XL-vScSmnsm2cANHlIa68zYOCe99a2cmO19R4jVyhJq0AO2GVbslJlLVWrZfK1rVYsnrudXGfUqTeHGLY5SMGwVy4zdbM3ObCbWbuHHueY5S_nQJFk1ygMaOESG4yfh_-L_gFhLBh5Q</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Yang, Sheng</creator><creator>Wu, Liangyu</creator><creator>Zheng, Zekai</creator><creator>Ogihara, Masahiro</creator><creator>Guo, Kangrou</creator><creator>Ouyang, Wenzhan</creator><creator>He, Yaxing</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6870-3114</orcidid><orcidid>https://orcid.org/0000-0001-5264-1924</orcidid><orcidid>https://orcid.org/0009-0002-6630-3189</orcidid><orcidid>https://orcid.org/0009-0004-2783-7377</orcidid><orcidid>https://orcid.org/0000-0003-0483-5251</orcidid><orcidid>https://orcid.org/0000-0002-8300-7990</orcidid><orcidid>https://orcid.org/0009-0003-2402-0735</orcidid></search><sort><creationdate>202312</creationdate><title>The stability of unevenly spaced planetary systems</title><author>Yang, Sheng ; Wu, Liangyu ; Zheng, Zekai ; Ogihara, Masahiro ; Guo, Kangrou ; Ouyang, Wenzhan ; He, Yaxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-76c303b00528da00032dd7a5b5b24e6d912819e9801b3a897ec5154987d58a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Celestial mechanics</topic><topic>Planetary dynamics</topic><topic>Planetary formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sheng</creatorcontrib><creatorcontrib>Wu, Liangyu</creatorcontrib><creatorcontrib>Zheng, Zekai</creatorcontrib><creatorcontrib>Ogihara, Masahiro</creatorcontrib><creatorcontrib>Guo, Kangrou</creatorcontrib><creatorcontrib>Ouyang, Wenzhan</creatorcontrib><creatorcontrib>He, Yaxing</creatorcontrib><collection>CrossRef</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Sheng</au><au>Wu, Liangyu</au><au>Zheng, Zekai</au><au>Ogihara, Masahiro</au><au>Guo, Kangrou</au><au>Ouyang, Wenzhan</au><au>He, Yaxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stability of unevenly spaced planetary systems</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2023-12</date><risdate>2023</risdate><volume>406</volume><spage>115757</spage><pages>115757-</pages><artnum>115757</artnum><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>Studying the orbital stability of multi-planet systems is essential to understand planet formation, estimate the stable time of an observed planetary system, and advance population synthesis models. Although previous studies have primarily focused on ideal systems characterized by uniform orbital separations, in reality a diverse range of orbital separations exists among planets within the same system. This study focuses on investigating the dynamical stability of systems with non-uniform separation. We considered a system with 10 planets with masses of 10−7 solar masses around a central star with a mass of 1 solar mass. We performed more than 100,000 runs of N-body simulations with different parameters. Results demonstrate that reducing merely one pair of planetary spacing leads to an order of magnitude shorter orbital crossing times that could be formulated based on the Keplerian periods of the closest separation pair. Furthermore, the first collisions are found to be closely associated with the first encounter pair that is likely to be the closest separation pair initially. We conclude that when estimating the orbital crossing time and colliding pairs in a realistic situation, updating the formula derived for evenly spaced systems would be necessary.
•Orbital stability time is shorter in systems with pairs with short separation.•Care must be taken when applying orbital crossing times to actual systems.•First close encounters or collisions are correlated with the closest separation pair.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2023.115757</doi><orcidid>https://orcid.org/0000-0001-6870-3114</orcidid><orcidid>https://orcid.org/0000-0001-5264-1924</orcidid><orcidid>https://orcid.org/0009-0002-6630-3189</orcidid><orcidid>https://orcid.org/0009-0004-2783-7377</orcidid><orcidid>https://orcid.org/0000-0003-0483-5251</orcidid><orcidid>https://orcid.org/0000-0002-8300-7990</orcidid><orcidid>https://orcid.org/0009-0003-2402-0735</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2023-12, Vol.406, p.115757, Article 115757 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_icarus_2023_115757 |
source | Elsevier |
subjects | Celestial mechanics Planetary dynamics Planetary formation |
title | The stability of unevenly spaced planetary systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stability%20of%20unevenly%20spaced%20planetary%20systems&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Yang,%20Sheng&rft.date=2023-12&rft.volume=406&rft.spage=115757&rft.pages=115757-&rft.artnum=115757&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2023.115757&rft_dat=%3Celsevier_cross%3ES0019103523003342%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-76c303b00528da00032dd7a5b5b24e6d912819e9801b3a897ec5154987d58a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |