Loading…

Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip

The hybrid nanofluid flow past a permeable curved surface with nonlinear stretching is considered in this analysis. Here two kinds of particles considered to examine the flow field over the exponentially curved surface with a porous medium. The mathematical model underflow assumptions are developed...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer 2022-06, Vol.135, p.106107, Article 106107
Main Authors: Abbas, Nadeem, Rehman, Khalil Ur, Shatanawi, Wasfi, Malik, M.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63
cites cdi_FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63
container_end_page
container_issue
container_start_page 106107
container_title International communications in heat and mass transfer
container_volume 135
creator Abbas, Nadeem
Rehman, Khalil Ur
Shatanawi, Wasfi
Malik, M.Y.
description The hybrid nanofluid flow past a permeable curved surface with nonlinear stretching is considered in this analysis. Here two kinds of particles considered to examine the flow field over the exponentially curved surface with a porous medium. The mathematical model underflow assumptions are developed by using the Navier-Stokes equations. The mathematical model in terms of partial differential equations is reduced to a system of nonlinear ordinary differential equations through suitable transformations. The reduced system in terms of ordinary differential equations is solved by using the numerical scheme bvp4c method. The effects of involved physical parameters on velocity and temperature profiles are highlighted through tables and graphs. The major focus of this work is to compare the hybrid nanofluid heat transfer scale to the simple nanofluid. Two cases namely suction and injection are debated. The obtained results are validated by developing comparison with existing literature. Temperature profile exhibits declining behavior for improving the values of solid nanoparticle concentration in injection case while temperature profile is increasing towards higher values of solid nanoparticle concentration in case of suction. Rate of heat transfer achieved lesser by hybrid nanofluid when compared to simple nanofluid. The positive curvature parameter enhanced the momentum boundary layer thickness for both cases injection and suction. On increasing solid nanoparticle concentration, the velocity profile enhanced for the case of suction and injection case.
doi_str_mv 10.1016/j.icheatmasstransfer.2022.106107
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193322002299</els_id><sourcerecordid>S0735193322002299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjzmMHqniqgg2sLccZE1epU9lOq274dhwVVmxYzUhX98zoIHRNyYISWtysF1Z3oOJGhRC9csGAXzDCWIoLSsoTNKNVWWeEltUpmpGSi4zWnJ-jixDWhBBa0WqGvl7HDXirVY9DHNsDHgyesPiXia3D3aHxtsVOucH0Y9pMP-zxsEvpFvwGVNMDdoPrrQPlE8hD1J11n1iPfgctDqM3SgPe29jh2KXOdK-320t0ZlQf4OpnztHHw_378ilbvT0-L-9WmeY5ixmHhojSGNo2reIFNIqDqZkwiuStyhXTJudFUYhaGMZZU3JaV3lTlULURkDB5-j2yNV-CMGDkVtvN8ofJCVy8inX8q9POfmUR58J8XJEQPpzZ1MatAWnobUedJTtYP8P-wazMY8v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip</title><source>ScienceDirect Freedom Collection</source><creator>Abbas, Nadeem ; Rehman, Khalil Ur ; Shatanawi, Wasfi ; Malik, M.Y.</creator><creatorcontrib>Abbas, Nadeem ; Rehman, Khalil Ur ; Shatanawi, Wasfi ; Malik, M.Y.</creatorcontrib><description>The hybrid nanofluid flow past a permeable curved surface with nonlinear stretching is considered in this analysis. Here two kinds of particles considered to examine the flow field over the exponentially curved surface with a porous medium. The mathematical model underflow assumptions are developed by using the Navier-Stokes equations. The mathematical model in terms of partial differential equations is reduced to a system of nonlinear ordinary differential equations through suitable transformations. The reduced system in terms of ordinary differential equations is solved by using the numerical scheme bvp4c method. The effects of involved physical parameters on velocity and temperature profiles are highlighted through tables and graphs. The major focus of this work is to compare the hybrid nanofluid heat transfer scale to the simple nanofluid. Two cases namely suction and injection are debated. The obtained results are validated by developing comparison with existing literature. Temperature profile exhibits declining behavior for improving the values of solid nanoparticle concentration in injection case while temperature profile is increasing towards higher values of solid nanoparticle concentration in case of suction. Rate of heat transfer achieved lesser by hybrid nanofluid when compared to simple nanofluid. The positive curvature parameter enhanced the momentum boundary layer thickness for both cases injection and suction. On increasing solid nanoparticle concentration, the velocity profile enhanced for the case of suction and injection case.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2022.106107</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Curved surface ; Heat transfer ; Hybrid nanofluid ; Numerical solution ; Porous medium ; Thermal slip ; Thermal slip impact</subject><ispartof>International communications in heat and mass transfer, 2022-06, Vol.135, p.106107, Article 106107</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63</citedby><cites>FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abbas, Nadeem</creatorcontrib><creatorcontrib>Rehman, Khalil Ur</creatorcontrib><creatorcontrib>Shatanawi, Wasfi</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><title>Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip</title><title>International communications in heat and mass transfer</title><description>The hybrid nanofluid flow past a permeable curved surface with nonlinear stretching is considered in this analysis. Here two kinds of particles considered to examine the flow field over the exponentially curved surface with a porous medium. The mathematical model underflow assumptions are developed by using the Navier-Stokes equations. The mathematical model in terms of partial differential equations is reduced to a system of nonlinear ordinary differential equations through suitable transformations. The reduced system in terms of ordinary differential equations is solved by using the numerical scheme bvp4c method. The effects of involved physical parameters on velocity and temperature profiles are highlighted through tables and graphs. The major focus of this work is to compare the hybrid nanofluid heat transfer scale to the simple nanofluid. Two cases namely suction and injection are debated. The obtained results are validated by developing comparison with existing literature. Temperature profile exhibits declining behavior for improving the values of solid nanoparticle concentration in injection case while temperature profile is increasing towards higher values of solid nanoparticle concentration in case of suction. Rate of heat transfer achieved lesser by hybrid nanofluid when compared to simple nanofluid. The positive curvature parameter enhanced the momentum boundary layer thickness for both cases injection and suction. On increasing solid nanoparticle concentration, the velocity profile enhanced for the case of suction and injection case.</description><subject>Curved surface</subject><subject>Heat transfer</subject><subject>Hybrid nanofluid</subject><subject>Numerical solution</subject><subject>Porous medium</subject><subject>Thermal slip</subject><subject>Thermal slip impact</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjzmMHqniqgg2sLccZE1epU9lOq274dhwVVmxYzUhX98zoIHRNyYISWtysF1Z3oOJGhRC9csGAXzDCWIoLSsoTNKNVWWeEltUpmpGSi4zWnJ-jixDWhBBa0WqGvl7HDXirVY9DHNsDHgyesPiXia3D3aHxtsVOucH0Y9pMP-zxsEvpFvwGVNMDdoPrrQPlE8hD1J11n1iPfgctDqM3SgPe29jh2KXOdK-320t0ZlQf4OpnztHHw_378ilbvT0-L-9WmeY5ixmHhojSGNo2reIFNIqDqZkwiuStyhXTJudFUYhaGMZZU3JaV3lTlULURkDB5-j2yNV-CMGDkVtvN8ofJCVy8inX8q9POfmUR58J8XJEQPpzZ1MatAWnobUedJTtYP8P-wazMY8v</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Abbas, Nadeem</creator><creator>Rehman, Khalil Ur</creator><creator>Shatanawi, Wasfi</creator><creator>Malik, M.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202206</creationdate><title>Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip</title><author>Abbas, Nadeem ; Rehman, Khalil Ur ; Shatanawi, Wasfi ; Malik, M.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Curved surface</topic><topic>Heat transfer</topic><topic>Hybrid nanofluid</topic><topic>Numerical solution</topic><topic>Porous medium</topic><topic>Thermal slip</topic><topic>Thermal slip impact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Nadeem</creatorcontrib><creatorcontrib>Rehman, Khalil Ur</creatorcontrib><creatorcontrib>Shatanawi, Wasfi</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><collection>CrossRef</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Nadeem</au><au>Rehman, Khalil Ur</au><au>Shatanawi, Wasfi</au><au>Malik, M.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2022-06</date><risdate>2022</risdate><volume>135</volume><spage>106107</spage><pages>106107-</pages><artnum>106107</artnum><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>The hybrid nanofluid flow past a permeable curved surface with nonlinear stretching is considered in this analysis. Here two kinds of particles considered to examine the flow field over the exponentially curved surface with a porous medium. The mathematical model underflow assumptions are developed by using the Navier-Stokes equations. The mathematical model in terms of partial differential equations is reduced to a system of nonlinear ordinary differential equations through suitable transformations. The reduced system in terms of ordinary differential equations is solved by using the numerical scheme bvp4c method. The effects of involved physical parameters on velocity and temperature profiles are highlighted through tables and graphs. The major focus of this work is to compare the hybrid nanofluid heat transfer scale to the simple nanofluid. Two cases namely suction and injection are debated. The obtained results are validated by developing comparison with existing literature. Temperature profile exhibits declining behavior for improving the values of solid nanoparticle concentration in injection case while temperature profile is increasing towards higher values of solid nanoparticle concentration in case of suction. Rate of heat transfer achieved lesser by hybrid nanofluid when compared to simple nanofluid. The positive curvature parameter enhanced the momentum boundary layer thickness for both cases injection and suction. On increasing solid nanoparticle concentration, the velocity profile enhanced for the case of suction and injection case.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2022.106107</doi></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2022-06, Vol.135, p.106107, Article 106107
issn 0735-1933
1879-0178
language eng
recordid cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106107
source ScienceDirect Freedom Collection
subjects Curved surface
Heat transfer
Hybrid nanofluid
Numerical solution
Porous medium
Thermal slip
Thermal slip impact
title Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20heat%20transfer%20in%20hybrid%20nanofluid%20flow%20over%20permeable%20nonlinear%20stretching%20curved%20surface%20with%20thermal%20slip&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Abbas,%20Nadeem&rft.date=2022-06&rft.volume=135&rft.spage=106107&rft.pages=106107-&rft.artnum=106107&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2022.106107&rft_dat=%3Celsevier_cross%3ES0735193322002299%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-3eb057ff1dbda36eba3ef925fa04da4a2cf43666595f232b731984b87559f5e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true