Loading…

A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation

•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diff...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer 2022-10, Vol.137, p.106266, Article 106266
Main Authors: Ali, Samah A., Rudziva, Munyaradzi, Sibanda, Precious, Noreldin, Osman A.I., Goqo, Sicelo P., Mthethwa, Hloniphile Sithole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33
cites cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33
container_end_page
container_issue
container_start_page 106266
container_title International communications in heat and mass transfer
container_volume 137
creator Ali, Samah A.
Rudziva, Munyaradzi
Sibanda, Precious
Noreldin, Osman A.I.
Goqo, Sicelo P.
Mthethwa, Hloniphile Sithole
description •Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2
doi_str_mv 10.1016/j.icheatmasstransfer.2022.106266
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193322003888</els_id><sourcerecordid>S0735193322003888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvkKWbqbnNbWcpXim40XVIkxObMk1Kkqn0FXxqZ1p3btycw-E_fPx8CN1SMqOEVnebmdNrUHmrUspR-WQhzhhhbIgrVlVnaEKbui0IrZtzNCE1Lwvacn6JrlLaEEJoQ5sJ-p5j328hOq06nHJvDjhYbEK_6qAwzto-uT1gHfwedHbBY-dxXgNW3qWQY9g5jXchhj7hTh0g4t6bYcaQ1fg-ULfB9N3xwF8urwdAhjgGY338CR7iMb1GF1Z1CW5-9xR9PD68L56L5dvTy2K-LDQXLBeiZJRq01rdlsLUotE1lEZYJSyAqnTdtkRwaJhtjaKNJkLXJROWM7pSoDifovsTV8eQUgQrd9FtVTxISuToVm7kX7dydCtPbgfE6wkBQ8-9G9KkHXgNxsVBkzTB_R_2A-wDlHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</creator><creatorcontrib>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</creatorcontrib><description>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2&lt;&lt;[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5&lt;&lt;[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2022.106266</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Block hybrid method ; Heat and mass transfer ; Porous Media ; Rotation ; Stability analysis</subject><ispartof>International communications in heat and mass transfer, 2022-10, Vol.137, p.106266, Article 106266</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</citedby><cites>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</cites><orcidid>0000-0003-2115-4642 ; 0000-0002-4028-818X ; 0000-0003-1023-4444 ; 0000-0002-8736-0601 ; 0000-0002-6871-7185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Samah A.</creatorcontrib><creatorcontrib>Rudziva, Munyaradzi</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><creatorcontrib>Noreldin, Osman A.I.</creatorcontrib><creatorcontrib>Goqo, Sicelo P.</creatorcontrib><creatorcontrib>Mthethwa, Hloniphile Sithole</creatorcontrib><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><title>International communications in heat and mass transfer</title><description>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2&lt;&lt;[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5&lt;&lt;[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</description><subject>Block hybrid method</subject><subject>Heat and mass transfer</subject><subject>Porous Media</subject><subject>Rotation</subject><subject>Stability analysis</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvkKWbqbnNbWcpXim40XVIkxObMk1Kkqn0FXxqZ1p3btycw-E_fPx8CN1SMqOEVnebmdNrUHmrUspR-WQhzhhhbIgrVlVnaEKbui0IrZtzNCE1Lwvacn6JrlLaEEJoQ5sJ-p5j328hOq06nHJvDjhYbEK_6qAwzto-uT1gHfwedHbBY-dxXgNW3qWQY9g5jXchhj7hTh0g4t6bYcaQ1fg-ULfB9N3xwF8urwdAhjgGY338CR7iMb1GF1Z1CW5-9xR9PD68L56L5dvTy2K-LDQXLBeiZJRq01rdlsLUotE1lEZYJSyAqnTdtkRwaJhtjaKNJkLXJROWM7pSoDifovsTV8eQUgQrd9FtVTxISuToVm7kX7dydCtPbgfE6wkBQ8-9G9KkHXgNxsVBkzTB_R_2A-wDlHI</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ali, Samah A.</creator><creator>Rudziva, Munyaradzi</creator><creator>Sibanda, Precious</creator><creator>Noreldin, Osman A.I.</creator><creator>Goqo, Sicelo P.</creator><creator>Mthethwa, Hloniphile Sithole</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2115-4642</orcidid><orcidid>https://orcid.org/0000-0002-4028-818X</orcidid><orcidid>https://orcid.org/0000-0003-1023-4444</orcidid><orcidid>https://orcid.org/0000-0002-8736-0601</orcidid><orcidid>https://orcid.org/0000-0002-6871-7185</orcidid></search><sort><creationdate>202210</creationdate><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><author>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Block hybrid method</topic><topic>Heat and mass transfer</topic><topic>Porous Media</topic><topic>Rotation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Samah A.</creatorcontrib><creatorcontrib>Rudziva, Munyaradzi</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><creatorcontrib>Noreldin, Osman A.I.</creatorcontrib><creatorcontrib>Goqo, Sicelo P.</creatorcontrib><creatorcontrib>Mthethwa, Hloniphile Sithole</creatorcontrib><collection>CrossRef</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Samah A.</au><au>Rudziva, Munyaradzi</au><au>Sibanda, Precious</au><au>Noreldin, Osman A.I.</au><au>Goqo, Sicelo P.</au><au>Mthethwa, Hloniphile Sithole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2022-10</date><risdate>2022</risdate><volume>137</volume><spage>106266</spage><pages>106266-</pages><artnum>106266</artnum><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2&lt;&lt;[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5&lt;&lt;[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2022.106266</doi><orcidid>https://orcid.org/0000-0003-2115-4642</orcidid><orcidid>https://orcid.org/0000-0002-4028-818X</orcidid><orcidid>https://orcid.org/0000-0003-1023-4444</orcidid><orcidid>https://orcid.org/0000-0002-8736-0601</orcidid><orcidid>https://orcid.org/0000-0002-6871-7185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2022-10, Vol.137, p.106266, Article 106266
issn 0735-1933
1879-0178
language eng
recordid cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106266
source ScienceDirect Freedom Collection 2022-2024
subjects Block hybrid method
Heat and mass transfer
Porous Media
Rotation
Stability analysis
title A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20double-diffusive%20convection%20in%20the%20anisotropic%20porous%20layer%20under%20rotational%20modulation%20with%20internal%20heat%20generation&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Ali,%20Samah%20A.&rft.date=2022-10&rft.volume=137&rft.spage=106266&rft.pages=106266-&rft.artnum=106266&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2022.106266&rft_dat=%3Celsevier_cross%3ES0735193322003888%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true