Loading…
A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation
•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system. Double-diff...
Saved in:
Published in: | International communications in heat and mass transfer 2022-10, Vol.137, p.106266, Article 106266 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33 |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33 |
container_end_page | |
container_issue | |
container_start_page | 106266 |
container_title | International communications in heat and mass transfer |
container_volume | 137 |
creator | Ali, Samah A. Rudziva, Munyaradzi Sibanda, Precious Noreldin, Osman A.I. Goqo, Sicelo P. Mthethwa, Hloniphile Sithole |
description | •Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system.
Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2 |
doi_str_mv | 10.1016/j.icheatmasstransfer.2022.106266 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193322003888</els_id><sourcerecordid>S0735193322003888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvkKWbqbnNbWcpXim40XVIkxObMk1Kkqn0FXxqZ1p3btycw-E_fPx8CN1SMqOEVnebmdNrUHmrUspR-WQhzhhhbIgrVlVnaEKbui0IrZtzNCE1Lwvacn6JrlLaEEJoQ5sJ-p5j328hOq06nHJvDjhYbEK_6qAwzto-uT1gHfwedHbBY-dxXgNW3qWQY9g5jXchhj7hTh0g4t6bYcaQ1fg-ULfB9N3xwF8urwdAhjgGY338CR7iMb1GF1Z1CW5-9xR9PD68L56L5dvTy2K-LDQXLBeiZJRq01rdlsLUotE1lEZYJSyAqnTdtkRwaJhtjaKNJkLXJROWM7pSoDifovsTV8eQUgQrd9FtVTxISuToVm7kX7dydCtPbgfE6wkBQ8-9G9KkHXgNxsVBkzTB_R_2A-wDlHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</creator><creatorcontrib>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</creatorcontrib><description>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system.
Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2<<[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5<<[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2022.106266</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Block hybrid method ; Heat and mass transfer ; Porous Media ; Rotation ; Stability analysis</subject><ispartof>International communications in heat and mass transfer, 2022-10, Vol.137, p.106266, Article 106266</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</citedby><cites>FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</cites><orcidid>0000-0003-2115-4642 ; 0000-0002-4028-818X ; 0000-0003-1023-4444 ; 0000-0002-8736-0601 ; 0000-0002-6871-7185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Samah A.</creatorcontrib><creatorcontrib>Rudziva, Munyaradzi</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><creatorcontrib>Noreldin, Osman A.I.</creatorcontrib><creatorcontrib>Goqo, Sicelo P.</creatorcontrib><creatorcontrib>Mthethwa, Hloniphile Sithole</creatorcontrib><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><title>International communications in heat and mass transfer</title><description>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system.
Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2<<[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5<<[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</description><subject>Block hybrid method</subject><subject>Heat and mass transfer</subject><subject>Porous Media</subject><subject>Rotation</subject><subject>Stability analysis</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvkKWbqbnNbWcpXim40XVIkxObMk1Kkqn0FXxqZ1p3btycw-E_fPx8CN1SMqOEVnebmdNrUHmrUspR-WQhzhhhbIgrVlVnaEKbui0IrZtzNCE1Lwvacn6JrlLaEEJoQ5sJ-p5j328hOq06nHJvDjhYbEK_6qAwzto-uT1gHfwedHbBY-dxXgNW3qWQY9g5jXchhj7hTh0g4t6bYcaQ1fg-ULfB9N3xwF8urwdAhjgGY338CR7iMb1GF1Z1CW5-9xR9PD68L56L5dvTy2K-LDQXLBeiZJRq01rdlsLUotE1lEZYJSyAqnTdtkRwaJhtjaKNJkLXJROWM7pSoDifovsTV8eQUgQrd9FtVTxISuToVm7kX7dydCtPbgfE6wkBQ8-9G9KkHXgNxsVBkzTB_R_2A-wDlHI</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ali, Samah A.</creator><creator>Rudziva, Munyaradzi</creator><creator>Sibanda, Precious</creator><creator>Noreldin, Osman A.I.</creator><creator>Goqo, Sicelo P.</creator><creator>Mthethwa, Hloniphile Sithole</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2115-4642</orcidid><orcidid>https://orcid.org/0000-0002-4028-818X</orcidid><orcidid>https://orcid.org/0000-0003-1023-4444</orcidid><orcidid>https://orcid.org/0000-0002-8736-0601</orcidid><orcidid>https://orcid.org/0000-0002-6871-7185</orcidid></search><sort><creationdate>202210</creationdate><title>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</title><author>Ali, Samah A. ; Rudziva, Munyaradzi ; Sibanda, Precious ; Noreldin, Osman A.I. ; Goqo, Sicelo P. ; Mthethwa, Hloniphile Sithole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Block hybrid method</topic><topic>Heat and mass transfer</topic><topic>Porous Media</topic><topic>Rotation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Samah A.</creatorcontrib><creatorcontrib>Rudziva, Munyaradzi</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><creatorcontrib>Noreldin, Osman A.I.</creatorcontrib><creatorcontrib>Goqo, Sicelo P.</creatorcontrib><creatorcontrib>Mthethwa, Hloniphile Sithole</creatorcontrib><collection>CrossRef</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Samah A.</au><au>Rudziva, Munyaradzi</au><au>Sibanda, Precious</au><au>Noreldin, Osman A.I.</au><au>Goqo, Sicelo P.</au><au>Mthethwa, Hloniphile Sithole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2022-10</date><risdate>2022</risdate><volume>137</volume><spage>106266</spage><pages>106266-</pages><artnum>106266</artnum><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>•Rotational modulation effects on heat and mass transport in porous medium is explained.•Nusselt and Sherwood numbers were used to quantify heat and mass.•Block hybrid method is used to solve the Lorenz equations.•The rotational modulation was found to affect the stability of the system.
Double-diffusive convection in a non-uniformly rotating anisotropic fluid layer with internal heating is investigated. The normal mode technique is used to obtain the critical stationary and oscillatory Rayleigh numbers. The analysis for the nonlinear case is based on minimal truncated double Fourier series which gives rise to the nonlinear Lorenz type equations. A local quasilinearization block hybrid method (LQBHM) is employed to solve the coupled nonlinear Lorenz type equations. The solution obtained using this method is compared with solutions obtained using the ode45 solver. The numerical results indicate that the LQBHM is accurate, efficient, and flexible. A weakly nonlinear analysis is used to investigate the rate of heat and mass transfer in the fluid system. The effects of time varying rotation, internal heat generation, anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on the heat and mass transfer are shown graphically. Among other results, the quantitative relationships for rotational modulation amplitude and internal heat generation are [Nu/Sh]δ1=0.2<<[Nu/Sh]δ1=1.1 and [Nu/Sh]Ri=5<<[Nu/Sh]Ri=30 respectively. Therefore, modulation amplitude and internal heating have been found to enhance the rate of heat mass transfer hence advancing the onset of thermal convection in the system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2022.106266</doi><orcidid>https://orcid.org/0000-0003-2115-4642</orcidid><orcidid>https://orcid.org/0000-0002-4028-818X</orcidid><orcidid>https://orcid.org/0000-0003-1023-4444</orcidid><orcidid>https://orcid.org/0000-0002-8736-0601</orcidid><orcidid>https://orcid.org/0000-0002-6871-7185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2022-10, Vol.137, p.106266, Article 106266 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_icheatmasstransfer_2022_106266 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Block hybrid method Heat and mass transfer Porous Media Rotation Stability analysis |
title | A numerical study of double-diffusive convection in the anisotropic porous layer under rotational modulation with internal heat generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20double-diffusive%20convection%20in%20the%20anisotropic%20porous%20layer%20under%20rotational%20modulation%20with%20internal%20heat%20generation&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Ali,%20Samah%20A.&rft.date=2022-10&rft.volume=137&rft.spage=106266&rft.pages=106266-&rft.artnum=106266&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2022.106266&rft_dat=%3Celsevier_cross%3ES0735193322003888%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-45211cd9fc954d748c7e5d4fa4feea6c799043e82f9da18c04c7524f321baea33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |