Loading…

Design and Simulation of a Machine-learning and Model Predictive Control Approach to Autonomous Race Driving for the F1/10 Platform

This paper addresses the challenges of developing an embedded non-linear model predictive control (NMPC) solution for the optimal driving of miniature scale autonomous vehicles (AVs). The NMPC approach lends itself perfectly to driving applications, provided that a system for localization and tracki...

Full description

Saved in:
Bibliographic Details
Published in:IFAC-PapersOnLine 2020, Vol.53 (2), p.6031-6036
Main Authors: Tătulea-Codrean, Alexandra, Mariani, Tommaso, Engell, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the challenges of developing an embedded non-linear model predictive control (NMPC) solution for the optimal driving of miniature scale autonomous vehicles (AVs). The NMPC approach lends itself perfectly to driving applications, provided that a system for localization and tracking of the vehicle is available. An important challenge in the implementation results from the need to accurately steer the vehicle at high speeds, which requires fast actuation. In this paper we present a solution to this problem, which employs an artificial neural network (ANN) controller trained with rigorous NMPC input-output data. We discuss the development process, from modelling until the realization of the ANN controller within the operating system of the AV. The procedure is demonstrated within the virtual environment of the popular F1/10 race car, an AV platform widely used in AI and autonomous driving challenges. The results contain both NMPC and ANN-based simulations for different race tracks and for different driving strategies. The main focus of this work lies in the formulation of the optimal driving control problem and the training method of the ANN. Our approach uses a standardization of the driving problem, which enables us to abstractize optimal driving and to simplify it for the learning process. We show how driving patterns can be learned accurately on a reduced set of training data and that they can subsequently be extended to new and more challenging driving situations.
ISSN:2405-8963
2405-8963
DOI:10.1016/j.ifacol.2020.12.1669