Loading…

Autonomous Underwater Vehicle Positioning Control - a Velocity Form LPV-MPC Approach

In this work, the positioning control of an autonomous underwater vehicle (AUV) is considered for docking operations in the presence of varying tidal currents. The AUV model is described by a dynamic model and a kinetic model, both are linear parameter varying (LPV). A velocity form LPV model predic...

Full description

Saved in:
Bibliographic Details
Main Authors: Jimoh, Isah A., Yue, Hong, Küçükdemiral, Ibrahim B.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the positioning control of an autonomous underwater vehicle (AUV) is considered for docking operations in the presence of varying tidal currents. The AUV model is described by a dynamic model and a kinetic model, both are linear parameter varying (LPV). A velocity form LPV model predictive control (LPV-MPC) scheme is proposed, in which the AUV dynamic model is used for the states and the kinetic model is used for the output. The interdependence of AUV kinematic model and dynamic model is exploited to avoid increased state dimension. The complete velocity form controller design enables the cancellation of disturbance effects through the use of the AUV's velocity vector increment for predicting the future evolution of the system. Compared to the original predictive control for the Naminow-D AUV that uses a time-varying Kalman filter for state estimation to approximate disturbances, the proposed algorithm does not require an estimator to eliminate unknown current disturbance, therefore simplifies design and implementation. Simulation studies show the merit of the proposed controller over the original Naminow-D predictive controller especially in terms of improved transient response and reduced sensitivity to time-varying external disturbances.
ISSN:2405-8963
2405-8963
DOI:10.1016/j.ifacol.2023.10.1820