Loading…

Computing Optimal Upper Bounds on the H2-norm of ODE-PDE Systems using Linear Partial Inequalities

Recently, a broad class of linear delayed and ODE-PDEs systems was shown to have an equivalent representation using Partial Integral Equations (PIEs). In this paper, we use this PIE representation, combined with algorithms for convex optimization of Partial Integral (PI) operators to bound the H2-no...

Full description

Saved in:
Bibliographic Details
Published in:IFAC-PapersOnLine 2023-01, Vol.56 (2), p.6994-6999
Main Authors: Braghini, Danilo, Peet, Matthew M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, a broad class of linear delayed and ODE-PDEs systems was shown to have an equivalent representation using Partial Integral Equations (PIEs). In this paper, we use this PIE representation, combined with algorithms for convex optimization of Partial Integral (PI) operators to bound the H2-norm for input-output systems of this class. Specifically, the methods proposed here apply to delayed and ODE-PDE systems (including delayed PDE systems) in one or two spatial variables where the disturbance does not enter through the boundary. For such systems, we define a notion of H2-norm using an initial state-to-output framework and show that this notion reduces to more traditional concepts under the assumption of existence of a strongly continuous semigroup. Next, we consider input-output systems for which there exists a PIE representation and for such systems show that computing a minimal upper bound on the H2-norm of delayed and PDE systems can be equivalently formulated as a convex optimization problem subject to linear PI operator inequalities (LPIs). We convert, then, these optimization problems to Semi-Definite Programming (SDP) problems using the PIETOOLS toolbox. Finally, we apply the results to several numerical examples – focusing on time-delay systems (TDS) for which comparable H2 approximation results are available in the literature. The numerical results demonstrate the accuracy of the computed upper bound on the H2-norm.
ISSN:2405-8963
2405-8963
DOI:10.1016/j.ifacol.2023.10.538