Loading…
Workers Fatigue Monitoring for Well-being Improvement in Manufacturing
In Industry 5.0, worker well-being is paramount for organizational resilience and sustainability. Physical fatigue, work-life balance, and job competency significantly impact worker welfare and, therefore, efficiency and effectiveness. This study collects data in different industrial scenarios using...
Saved in:
Published in: | IFAC-PapersOnLine 2024, Vol.58 (19), p.61-66 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Industry 5.0, worker well-being is paramount for organizational resilience and sustainability. Physical fatigue, work-life balance, and job competency significantly impact worker welfare and, therefore, efficiency and effectiveness. This study collects data in different industrial scenarios using non-invasive wearable devices for dynamic data and questionnaires for quasi-static data. Using Machine Learning algorithms, including Random Forest and Feedforward Neural Network models, the study predicts the physical fatigue of workers across multi-class and binary classifications. The developed Fatigue Monitoring System software integrates these models to monitor fatigue and improve worker well-being. |
---|---|
ISSN: | 2405-8963 2405-8963 |
DOI: | 10.1016/j.ifacol.2024.09.092 |