Loading…

Evaluating the effects of uncertainty in interval pairwise comparison matrices

In the context of multicriteria decision analysis, Pairwise Comparison Matrices (PCMs) represent a widely-used mathematical structure to capture comparisons about criteria or alternatives. When a confidence (or uncertainty) level is associated to the provided comparison measures, PCMs are naturally...

Full description

Saved in:
Bibliographic Details
Published in:International journal of approximate reasoning 2023-12, Vol.163, p.109034, Article 109034
Main Authors: Faramondi, Luca, Oliva, Gabriele, Setola, Roberto, Bozóki, Sándor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3
cites cdi_FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3
container_end_page
container_issue
container_start_page 109034
container_title International journal of approximate reasoning
container_volume 163
creator Faramondi, Luca
Oliva, Gabriele
Setola, Roberto
Bozóki, Sándor
description In the context of multicriteria decision analysis, Pairwise Comparison Matrices (PCMs) represent a widely-used mathematical structure to capture comparisons about criteria or alternatives. When a confidence (or uncertainty) level is associated to the provided comparison measures, PCMs are naturally extended to the so-called Interval Pairwise Comparison Matrices (IPCM). Classical approaches, based on the eigenvector associated to the largest eigenvalue of the matrix (Analytic Hierarchy Process) or optimization problems (e.g. the Logarithmic Least Squares approach), are frequently adopted in order to estimate absolute utilities from relative judgements in absence of expert's uncertainty. Conversely, in the presence of uncertain measures, computationally intensive approaches based on Monte Carlo analysis have been adopted. In this paper, starting from a given PCM, we provide an approach able to find the smallest multiplicative perturbations of its elements able to perturb the obtained ranking from the ordinal perspective. On the basis of such approach, we provide theoretical results which can be adopted also in the case of uncertain measures (e.g., IPCMs) with the aim to characterize the stability of the obtained ranking on the basis of the given uncertainty. As testified by numerical examples that conclude the paper, the proposed framework can greatly simplify the classical approaches by providing the possibility to make direct assumptions on the final outcome of Monte Carlo analysis and reducing or avoiding its required computational effort.
doi_str_mv 10.1016/j.ijar.2023.109034
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijar_2023_109034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X23001652</els_id><sourcerecordid>S0888613X23001652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWKsv4FVeYGtOu0nBGyn1AEVvFLwLs9lZzdLuliSt9O3Nsl4LAwPDfMP8HyG3nC0449Vdt_AdhIVgQubBkkl1RmbcaFkoLfk5mTFjTFFx-XlJrmLsGGOVVmZGXtdH2B4g-f6Lpm-k2LboUqRDSw-9w5DA9-lEfZ8rYcjLdA8-_PiI1A27PQQfh57uIAXvMF6Tixa2EW_--px8PK7fV8_F5u3pZfWwKZxUKhU1X2rDhXKsNlJp01R1g6UBowFEJYzSUGunpGt0LQRjS1SqZLwsUWltKpBzIqa7LgwxBmztPvgdhJPlzI5GbGdHI3Y0YicjGbqfIMyfHT0GG53HnLLxIYe2zeD_w38BlwpqbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluating the effects of uncertainty in interval pairwise comparison matrices</title><source>ScienceDirect Freedom Collection</source><creator>Faramondi, Luca ; Oliva, Gabriele ; Setola, Roberto ; Bozóki, Sándor</creator><creatorcontrib>Faramondi, Luca ; Oliva, Gabriele ; Setola, Roberto ; Bozóki, Sándor</creatorcontrib><description>In the context of multicriteria decision analysis, Pairwise Comparison Matrices (PCMs) represent a widely-used mathematical structure to capture comparisons about criteria or alternatives. When a confidence (or uncertainty) level is associated to the provided comparison measures, PCMs are naturally extended to the so-called Interval Pairwise Comparison Matrices (IPCM). Classical approaches, based on the eigenvector associated to the largest eigenvalue of the matrix (Analytic Hierarchy Process) or optimization problems (e.g. the Logarithmic Least Squares approach), are frequently adopted in order to estimate absolute utilities from relative judgements in absence of expert's uncertainty. Conversely, in the presence of uncertain measures, computationally intensive approaches based on Monte Carlo analysis have been adopted. In this paper, starting from a given PCM, we provide an approach able to find the smallest multiplicative perturbations of its elements able to perturb the obtained ranking from the ordinal perspective. On the basis of such approach, we provide theoretical results which can be adopted also in the case of uncertain measures (e.g., IPCMs) with the aim to characterize the stability of the obtained ranking on the basis of the given uncertainty. As testified by numerical examples that conclude the paper, the proposed framework can greatly simplify the classical approaches by providing the possibility to make direct assumptions on the final outcome of Monte Carlo analysis and reducing or avoiding its required computational effort.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2023.109034</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Interval pairwise comparison matrix ; Monte Carlo ; Multicriteria decision analysis ; Ranking stability ; Uncertainty</subject><ispartof>International journal of approximate reasoning, 2023-12, Vol.163, p.109034, Article 109034</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3</citedby><cites>FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3</cites><orcidid>0000-0002-3750-2405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Faramondi, Luca</creatorcontrib><creatorcontrib>Oliva, Gabriele</creatorcontrib><creatorcontrib>Setola, Roberto</creatorcontrib><creatorcontrib>Bozóki, Sándor</creatorcontrib><title>Evaluating the effects of uncertainty in interval pairwise comparison matrices</title><title>International journal of approximate reasoning</title><description>In the context of multicriteria decision analysis, Pairwise Comparison Matrices (PCMs) represent a widely-used mathematical structure to capture comparisons about criteria or alternatives. When a confidence (or uncertainty) level is associated to the provided comparison measures, PCMs are naturally extended to the so-called Interval Pairwise Comparison Matrices (IPCM). Classical approaches, based on the eigenvector associated to the largest eigenvalue of the matrix (Analytic Hierarchy Process) or optimization problems (e.g. the Logarithmic Least Squares approach), are frequently adopted in order to estimate absolute utilities from relative judgements in absence of expert's uncertainty. Conversely, in the presence of uncertain measures, computationally intensive approaches based on Monte Carlo analysis have been adopted. In this paper, starting from a given PCM, we provide an approach able to find the smallest multiplicative perturbations of its elements able to perturb the obtained ranking from the ordinal perspective. On the basis of such approach, we provide theoretical results which can be adopted also in the case of uncertain measures (e.g., IPCMs) with the aim to characterize the stability of the obtained ranking on the basis of the given uncertainty. As testified by numerical examples that conclude the paper, the proposed framework can greatly simplify the classical approaches by providing the possibility to make direct assumptions on the final outcome of Monte Carlo analysis and reducing or avoiding its required computational effort.</description><subject>Interval pairwise comparison matrix</subject><subject>Monte Carlo</subject><subject>Multicriteria decision analysis</subject><subject>Ranking stability</subject><subject>Uncertainty</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWKsv4FVeYGtOu0nBGyn1AEVvFLwLs9lZzdLuliSt9O3Nsl4LAwPDfMP8HyG3nC0449Vdt_AdhIVgQubBkkl1RmbcaFkoLfk5mTFjTFFx-XlJrmLsGGOVVmZGXtdH2B4g-f6Lpm-k2LboUqRDSw-9w5DA9-lEfZ8rYcjLdA8-_PiI1A27PQQfh57uIAXvMF6Tixa2EW_--px8PK7fV8_F5u3pZfWwKZxUKhU1X2rDhXKsNlJp01R1g6UBowFEJYzSUGunpGt0LQRjS1SqZLwsUWltKpBzIqa7LgwxBmztPvgdhJPlzI5GbGdHI3Y0YicjGbqfIMyfHT0GG53HnLLxIYe2zeD_w38BlwpqbA</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Faramondi, Luca</creator><creator>Oliva, Gabriele</creator><creator>Setola, Roberto</creator><creator>Bozóki, Sándor</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3750-2405</orcidid></search><sort><creationdate>202312</creationdate><title>Evaluating the effects of uncertainty in interval pairwise comparison matrices</title><author>Faramondi, Luca ; Oliva, Gabriele ; Setola, Roberto ; Bozóki, Sándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Interval pairwise comparison matrix</topic><topic>Monte Carlo</topic><topic>Multicriteria decision analysis</topic><topic>Ranking stability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faramondi, Luca</creatorcontrib><creatorcontrib>Oliva, Gabriele</creatorcontrib><creatorcontrib>Setola, Roberto</creatorcontrib><creatorcontrib>Bozóki, Sándor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faramondi, Luca</au><au>Oliva, Gabriele</au><au>Setola, Roberto</au><au>Bozóki, Sándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the effects of uncertainty in interval pairwise comparison matrices</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2023-12</date><risdate>2023</risdate><volume>163</volume><spage>109034</spage><pages>109034-</pages><artnum>109034</artnum><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>In the context of multicriteria decision analysis, Pairwise Comparison Matrices (PCMs) represent a widely-used mathematical structure to capture comparisons about criteria or alternatives. When a confidence (or uncertainty) level is associated to the provided comparison measures, PCMs are naturally extended to the so-called Interval Pairwise Comparison Matrices (IPCM). Classical approaches, based on the eigenvector associated to the largest eigenvalue of the matrix (Analytic Hierarchy Process) or optimization problems (e.g. the Logarithmic Least Squares approach), are frequently adopted in order to estimate absolute utilities from relative judgements in absence of expert's uncertainty. Conversely, in the presence of uncertain measures, computationally intensive approaches based on Monte Carlo analysis have been adopted. In this paper, starting from a given PCM, we provide an approach able to find the smallest multiplicative perturbations of its elements able to perturb the obtained ranking from the ordinal perspective. On the basis of such approach, we provide theoretical results which can be adopted also in the case of uncertain measures (e.g., IPCMs) with the aim to characterize the stability of the obtained ranking on the basis of the given uncertainty. As testified by numerical examples that conclude the paper, the proposed framework can greatly simplify the classical approaches by providing the possibility to make direct assumptions on the final outcome of Monte Carlo analysis and reducing or avoiding its required computational effort.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2023.109034</doi><orcidid>https://orcid.org/0000-0002-3750-2405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-613X
ispartof International journal of approximate reasoning, 2023-12, Vol.163, p.109034, Article 109034
issn 0888-613X
1873-4731
language eng
recordid cdi_crossref_primary_10_1016_j_ijar_2023_109034
source ScienceDirect Freedom Collection
subjects Interval pairwise comparison matrix
Monte Carlo
Multicriteria decision analysis
Ranking stability
Uncertainty
title Evaluating the effects of uncertainty in interval pairwise comparison matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20effects%20of%20uncertainty%20in%20interval%20pairwise%20comparison%20matrices&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Faramondi,%20Luca&rft.date=2023-12&rft.volume=163&rft.spage=109034&rft.pages=109034-&rft.artnum=109034&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2023.109034&rft_dat=%3Celsevier_cross%3ES0888613X23001652%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-b1978124c0b83478d6bde58a87aa262847ab7c43cd7b22009e4450155e47786a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true