Loading…
Removal of lead (II) from aqeouos waste using (CD-PCL-TiO2) bio-nanocomposites
Lead (Pb) pollution is our water system is a major concern, as this metal is toxic even at low concentration. This study aim to fabricate a bio-nanocomposite (cyclodextrin-polycaprolactone titanium dioxide) that will be used as an adsorbent for the removal of lead in aqueous waste. In this study, ti...
Saved in:
Published in: | International journal of biological macromolecules 2018-04, Vol.109, p.136-142 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lead (Pb) pollution is our water system is a major concern, as this metal is toxic even at low concentration. This study aim to fabricate a bio-nanocomposite (cyclodextrin-polycaprolactone titanium dioxide) that will be used as an adsorbent for the removal of lead in aqueous waste. In this study, titanium dioxide was synthesized via sol-gel technique then incorporated in a polymer blend (CD-PCL) via solution blending method. The resulting bio-nanocomposites were characterized using Scanning Electron Microscopy (SEM), transmission electron microscope (TEM) and Brunauer Emmett and Teller (BET). The effect of how factors such as pH, concentration and adsorbent dose affect the removal efficiency of the bio-nanocomposites were studies. Maximum adsorption of lead obtained was 98% at pH 9.7, 10 ppm with 0.005 g dosage. Kinetic studies and adsorption isotherms were also investigated. The adsorption data fit Langmuir isotherm. Pb (II) obeyed pseudo-second order kinetics. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2017.12.046 |