Loading…
The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties
Polylactide/cellulose nanocomposites were fabricated by blending of commercial polylactide (PLA) and modified cellulose nanocrystals (CNCs). Modified CNCs were prepared via the in situ polymerization of CNCs and L-lactic acid (CNCs-PLLA) or D-lactic acid (CNCs-PDLA). The actual occurrence of chemica...
Saved in:
Published in: | International journal of biological macromolecules 2020-07, Vol.155, p.1578-1588 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polylactide/cellulose nanocomposites were fabricated by blending of commercial polylactide (PLA) and modified cellulose nanocrystals (CNCs). Modified CNCs were prepared via the in situ polymerization of CNCs and L-lactic acid (CNCs-PLLA) or D-lactic acid (CNCs-PDLA). The actual occurrence of chemical bond between CNCs and PLA segment was confirmed by Fourier transform infrared, nuclear magnetic resonance, X-ray diffraction and solubility tests. Differential scanning calorimetry and X-ray diffraction characterization indicated that CNCs-PDLA better improved the crystallization ability of PLA matrix compared with CNCs-PLLA. Furthermore, compared with the neat PLA (60.0 MPa), the tensile strength of resulting nanocomposites showed an enhancement of up to 36% (81.65 MPa). And the nanocomposites with CNCs-PDLA exhibited both high crystallinity and improved mechanical properties. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2019.11.135 |