Loading…
Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability
In this work, a novel environmentally friendly semi-interpenetrating anionic hydrogel based on Xanthan gum/cross-linked polyacrylic acid/graphene oxide was prepared as superabsorbent for removing methylene blue as cationic dye from the water. Acrylic acid (AA) was crosslinked in xanthan (XG)/graphen...
Saved in:
Published in: | International journal of biological macromolecules 2020-06, Vol.152, p.884-893 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a novel environmentally friendly semi-interpenetrating anionic hydrogel based on Xanthan gum/cross-linked polyacrylic acid/graphene oxide was prepared as superabsorbent for removing methylene blue as cationic dye from the water. Acrylic acid (AA) was crosslinked in xanthan (XG)/graphene oxide (GO) solution by a novel synthetic acrylic-urethane crosslinker (MS). Various analyses such as SEM, FT-IR, 1H NMR, XRD, and TGA were used to study morphology, structure, and thermal stability of MS and semi-IPNs. The synthesized hydrogels showed pH-sensitive behavior in water uptake, with the highest and lowest swelling in alkaline and acidic media, respectively. The nanocomposites had better dimension stability and dye adsorption with increasing GO from 0 to 1%. Hydrogel containing 1% GO showed 485% and 88.5% swelling and dye adsorption efficiency, respectively. Different kinetic models including 1st order, 2nd order, intra-particle diffusion, and Elovich kinetics were studied. All models except 2nd order model are in good agreement with the experimental data. GO-containing hydrogels had a significant effect on methylene blue adsorption and this effect increased with an increase in the amount of GO. PAA/XG/GO hydrogels can be introduced as an eco-friendly adsorbent with high efficiency for the removal of cationic dye pollutions.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.02.082 |