Loading…

Preparation and characterization of GNRs stabled with the thiolated lemon polysaccharide and the applications for tumor photothermal therapy

Photothermal therapy is a novel strategy for cancer treatment, which can kill tumor cells by converting light energy into heat energy through irradiating photothermal conversion materials with laser. As a common photothermal agent, gold nanorods (GNRs) have characteristics of high conversion efficie...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-01, Vol.224, p.1303-1312
Main Authors: Zhou, Linan, Gong, Xiaotang, Zhao, Yinan, Xu, Jing, Guo, Yuanqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photothermal therapy is a novel strategy for cancer treatment, which can kill tumor cells by converting light energy into heat energy through irradiating photothermal conversion materials with laser. As a common photothermal agent, gold nanorods (GNRs) have characteristics of high conversion efficiency and long circulation time in vivo. However, improving stability and reducing toxicity of GNRs remain a significant challenge. In this research, a simple and novel strategy for the synthesis of modified GNRs was proposed. The polysaccharide CL90 was obtained from lemon, which was modified to afford thiolated lemon polysaccharide (SH-CL90). SH-CL90 was used to prepare stable GNRs and give the composite GNRs-SH-CL90, which was found to have good stability in PBS solution and possess high photothermal conversion effects and photothermal stability. The biological experiments revealed that GNRs-SH-CL90 inhibited tumor cell proliferation under near-infrared light irradiation and could induce apoptosis significantly. Furthermore, in vivo experiments supported that GNRs-SH-CL90 could inhibit the proliferation and migration of tumor cells. All the experiments demonstrated that GNRs-SH-CL90 might be promising in the field of cancer treatment. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.10.216