Loading…
Forecasting voltage harmonic distortion in residential distribution networks using smart meter data
•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near fut...
Saved in:
Published in: | International journal of electrical power & energy systems 2022-03, Vol.136, p.107653, Article 107653 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3 |
container_end_page | |
container_issue | |
container_start_page | 107653 |
container_title | International journal of electrical power & energy systems |
container_volume | 136 |
creator | Rodríguez-Pajarón, Pablo Hernández Bayo, Araceli Milanović, Jovica V. |
description | •Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future.
This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers. |
doi_str_mv | 10.1016/j.ijepes.2021.107653 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijepes_2021_107653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014206152100884X</els_id><sourcerecordid>S014206152100884X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CIvMDXJTJLJRpBirVBwo-uQJjc1YzspSVrx7Z12XLu6cM8Phw-he0pmlFDx0M1CB3vIM0YYHV5S8PoCTWgrVVVzKi_RhNCGVURQfo1ucu4IIVI1bILsIiawJpfQb_AxbovZAP40aRf7YLELucRUQuxx6HGCHBz0JZjtWUlhfThrPZTvmL4yPuRTTd6ZVPAOCiTsTDG36MqbbYa7vztFH4vn9_myWr29vM6fVpWtOSuVBAHGyxacU6xtVSO8BS4Y555aAetGWWoNVapdg5SDkzkulRLegKqN9_UUNWOvTTHnBF7vUxi2_GhK9AmU7vQISp9A6RHUEHscYzBsOwZIOtsAvQUXBjRFuxj-L_gFBBB3Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><source>ScienceDirect Freedom Collection</source><creator>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</creator><creatorcontrib>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</creatorcontrib><description>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future.
This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2021.107653</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Distribution network ; Neural network ; Power quality ; Smart meter ; Voltage distortion</subject><ispartof>International journal of electrical power & energy systems, 2022-03, Vol.136, p.107653, Article 107653</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</citedby><cites>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez-Pajarón, Pablo</creatorcontrib><creatorcontrib>Hernández Bayo, Araceli</creatorcontrib><creatorcontrib>Milanović, Jovica V.</creatorcontrib><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><title>International journal of electrical power & energy systems</title><description>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future.
This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</description><subject>Distribution network</subject><subject>Neural network</subject><subject>Power quality</subject><subject>Smart meter</subject><subject>Voltage distortion</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CIvMDXJTJLJRpBirVBwo-uQJjc1YzspSVrx7Z12XLu6cM8Phw-he0pmlFDx0M1CB3vIM0YYHV5S8PoCTWgrVVVzKi_RhNCGVURQfo1ucu4IIVI1bILsIiawJpfQb_AxbovZAP40aRf7YLELucRUQuxx6HGCHBz0JZjtWUlhfThrPZTvmL4yPuRTTd6ZVPAOCiTsTDG36MqbbYa7vztFH4vn9_myWr29vM6fVpWtOSuVBAHGyxacU6xtVSO8BS4Y555aAetGWWoNVapdg5SDkzkulRLegKqN9_UUNWOvTTHnBF7vUxi2_GhK9AmU7vQISp9A6RHUEHscYzBsOwZIOtsAvQUXBjRFuxj-L_gFBBB3Og</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Rodríguez-Pajarón, Pablo</creator><creator>Hernández Bayo, Araceli</creator><creator>Milanović, Jovica V.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202203</creationdate><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><author>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution network</topic><topic>Neural network</topic><topic>Power quality</topic><topic>Smart meter</topic><topic>Voltage distortion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Pajarón, Pablo</creatorcontrib><creatorcontrib>Hernández Bayo, Araceli</creatorcontrib><creatorcontrib>Milanović, Jovica V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of electrical power & energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Pajarón, Pablo</au><au>Hernández Bayo, Araceli</au><au>Milanović, Jovica V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</atitle><jtitle>International journal of electrical power & energy systems</jtitle><date>2022-03</date><risdate>2022</risdate><volume>136</volume><spage>107653</spage><pages>107653-</pages><artnum>107653</artnum><issn>0142-0615</issn><eissn>1879-3517</eissn><abstract>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future.
This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2021.107653</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-0615 |
ispartof | International journal of electrical power & energy systems, 2022-03, Vol.136, p.107653, Article 107653 |
issn | 0142-0615 1879-3517 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijepes_2021_107653 |
source | ScienceDirect Freedom Collection |
subjects | Distribution network Neural network Power quality Smart meter Voltage distortion |
title | Forecasting voltage harmonic distortion in residential distribution networks using smart meter data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20voltage%20harmonic%20distortion%20in%20residential%20distribution%20networks%20using%20smart%20meter%20data&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=Rodr%C3%ADguez-Pajar%C3%B3n,%20Pablo&rft.date=2022-03&rft.volume=136&rft.spage=107653&rft.pages=107653-&rft.artnum=107653&rft.issn=0142-0615&rft.eissn=1879-3517&rft_id=info:doi/10.1016/j.ijepes.2021.107653&rft_dat=%3Celsevier_cross%3ES014206152100884X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |