Loading…

Forecasting voltage harmonic distortion in residential distribution networks using smart meter data

•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near fut...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electrical power & energy systems 2022-03, Vol.136, p.107653, Article 107653
Main Authors: Rodríguez-Pajarón, Pablo, Hernández Bayo, Araceli, Milanović, Jovica V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3
cites cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3
container_end_page
container_issue
container_start_page 107653
container_title International journal of electrical power & energy systems
container_volume 136
creator Rodríguez-Pajarón, Pablo
Hernández Bayo, Araceli
Milanović, Jovica V.
description •Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future. This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.
doi_str_mv 10.1016/j.ijepes.2021.107653
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijepes_2021_107653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014206152100884X</els_id><sourcerecordid>S014206152100884X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4CIvMDXJTJLJRpBirVBwo-uQJjc1YzspSVrx7Z12XLu6cM8Phw-he0pmlFDx0M1CB3vIM0YYHV5S8PoCTWgrVVVzKi_RhNCGVURQfo1ucu4IIVI1bILsIiawJpfQb_AxbovZAP40aRf7YLELucRUQuxx6HGCHBz0JZjtWUlhfThrPZTvmL4yPuRTTd6ZVPAOCiTsTDG36MqbbYa7vztFH4vn9_myWr29vM6fVpWtOSuVBAHGyxacU6xtVSO8BS4Y555aAetGWWoNVapdg5SDkzkulRLegKqN9_UUNWOvTTHnBF7vUxi2_GhK9AmU7vQISp9A6RHUEHscYzBsOwZIOtsAvQUXBjRFuxj-L_gFBBB3Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><source>ScienceDirect Freedom Collection</source><creator>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</creator><creatorcontrib>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</creatorcontrib><description>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future. This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2021.107653</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Distribution network ; Neural network ; Power quality ; Smart meter ; Voltage distortion</subject><ispartof>International journal of electrical power &amp; energy systems, 2022-03, Vol.136, p.107653, Article 107653</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</citedby><cites>FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez-Pajarón, Pablo</creatorcontrib><creatorcontrib>Hernández Bayo, Araceli</creatorcontrib><creatorcontrib>Milanović, Jovica V.</creatorcontrib><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><title>International journal of electrical power &amp; energy systems</title><description>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future. This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</description><subject>Distribution network</subject><subject>Neural network</subject><subject>Power quality</subject><subject>Smart meter</subject><subject>Voltage distortion</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4CIvMDXJTJLJRpBirVBwo-uQJjc1YzspSVrx7Z12XLu6cM8Phw-he0pmlFDx0M1CB3vIM0YYHV5S8PoCTWgrVVVzKi_RhNCGVURQfo1ucu4IIVI1bILsIiawJpfQb_AxbovZAP40aRf7YLELucRUQuxx6HGCHBz0JZjtWUlhfThrPZTvmL4yPuRTTd6ZVPAOCiTsTDG36MqbbYa7vztFH4vn9_myWr29vM6fVpWtOSuVBAHGyxacU6xtVSO8BS4Y555aAetGWWoNVapdg5SDkzkulRLegKqN9_UUNWOvTTHnBF7vUxi2_GhK9AmU7vQISp9A6RHUEHscYzBsOwZIOtsAvQUXBjRFuxj-L_gFBBB3Og</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Rodríguez-Pajarón, Pablo</creator><creator>Hernández Bayo, Araceli</creator><creator>Milanović, Jovica V.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202203</creationdate><title>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</title><author>Rodríguez-Pajarón, Pablo ; Hernández Bayo, Araceli ; Milanović, Jovica V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution network</topic><topic>Neural network</topic><topic>Power quality</topic><topic>Smart meter</topic><topic>Voltage distortion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Pajarón, Pablo</creatorcontrib><creatorcontrib>Hernández Bayo, Araceli</creatorcontrib><creatorcontrib>Milanović, Jovica V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>International journal of electrical power &amp; energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Pajarón, Pablo</au><au>Hernández Bayo, Araceli</au><au>Milanović, Jovica V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting voltage harmonic distortion in residential distribution networks using smart meter data</atitle><jtitle>International journal of electrical power &amp; energy systems</jtitle><date>2022-03</date><risdate>2022</risdate><volume>136</volume><spage>107653</spage><pages>107653-</pages><artnum>107653</artnum><issn>0142-0615</issn><eissn>1879-3517</eissn><abstract>•Harmonic distortion can be forecasted with no specialized metering device.•Demand response meters can be used for power quality monitoring.•Artificial intelligence helps monitoring power quality at low voltage networks.•Utilities will increasingly have to cope with harmonic distortion in a near future. This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars of residential distribution feeders based on the data provided by a limited number of smart meters. The methodology provides relevant power quality indices to system operators using only the existing monitoring infrastructure required for demand response operation. Different algorithms for voltage THD forecasting are implemented, including artificial neural networks, and their performance is tested and compared. The necessary coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation algorithms are validated considering probabilistic demand load model developed based on typical harmonic injections of household devices obtained from measurements and using a typical European low voltage test-feeder with 471 residential consumers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2021.107653</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-0615
ispartof International journal of electrical power & energy systems, 2022-03, Vol.136, p.107653, Article 107653
issn 0142-0615
1879-3517
language eng
recordid cdi_crossref_primary_10_1016_j_ijepes_2021_107653
source ScienceDirect Freedom Collection
subjects Distribution network
Neural network
Power quality
Smart meter
Voltage distortion
title Forecasting voltage harmonic distortion in residential distribution networks using smart meter data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20voltage%20harmonic%20distortion%20in%20residential%20distribution%20networks%20using%20smart%20meter%20data&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=Rodr%C3%ADguez-Pajar%C3%B3n,%20Pablo&rft.date=2022-03&rft.volume=136&rft.spage=107653&rft.pages=107653-&rft.artnum=107653&rft.issn=0142-0615&rft.eissn=1879-3517&rft_id=info:doi/10.1016/j.ijepes.2021.107653&rft_dat=%3Celsevier_cross%3ES014206152100884X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-7e6eaf78edd9288946fce56255f1c6eb49c1ca1998be77af72d57996fae93aff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true