Loading…
Fatigue life, distortion behavior of AA 8011- nano B4C composite using simulated acoustic emission technique – An experimental and statistical appraisal
[Display omitted] •Morphology and characterization of AA 8011- nano B4C composite using FESEM, XRD and EDS.•Fabrication of AA 8011- nano B4C using electromagnetic frequency high energy stir casting technique.•Tensile, micro hardness and fatigue life analysis of AA 8011- nano B4C composite.•SN diagra...
Saved in:
Published in: | International journal of fatigue 2022-11, Vol.164, p.107168, Article 107168 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•Morphology and characterization of AA 8011- nano B4C composite using FESEM, XRD and EDS.•Fabrication of AA 8011- nano B4C using electromagnetic frequency high energy stir casting technique.•Tensile, micro hardness and fatigue life analysis of AA 8011- nano B4C composite.•SN diagram and its statistical significance were performed using one way ANOVA.•High cycle fatigue testing was carried out at stress ratio R = 0.1.•Online tensile fracture analysis by means of Acoustic Emission.
The high quality AA8011 aluminium alloy dispersed with different percentages of nano-sized B4C (0, 0.5,1 and 1.5 wt%) was fabricated by electromagnetic frequency high energy stir casting technique. The characterization study on metal matrix nanocomposites (MMNC) using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectrum (EDS), and X-ray Diffraction (XRD) confirmed the morphology and distribution of AA8011 with nano B4C. The microhardness analysis and strength using Vickers hardness testing and Electromechanical Universal Testing Machine, respectively, show significant mechanical properties improvement. The ductility study on Scanning Electron Microscope (SEM) images of the fractured samples reveal the transition from ductile to brittle nature in MMNCs. The online monitoring using Acoustic Emission (AE) during a tensile test indicates the mitigation in crack generation and its propagation. The substantial enhancement in fatigue life by the addition of nano B4C was evidenced by testing at a stress ratio (R = 0.1) and statistically significant (at p |
---|---|
ISSN: | 0142-1123 1879-3452 |
DOI: | 10.1016/j.ijfatigue.2022.107168 |