Loading…
The effects of vaporisation, condensation and diffusion of water inside the tissue during saline-infused radiofrequency ablation of the liver: A computational study
•Effect of vaporisation, condensation & diffusion on saline-infused RFA was studied.•Condensation significantly affects the prediction of the RFA treatment outcome.•Water diffusion is insignificant when compared to condensation.•The model serves as benchmark for the accurate modelling of saline-...
Saved in:
Published in: | International journal of heat and mass transfer 2022-09, Vol.194, p.123062, Article 123062 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Effect of vaporisation, condensation & diffusion on saline-infused RFA was studied.•Condensation significantly affects the prediction of the RFA treatment outcome.•Water diffusion is insignificant when compared to condensation.•The model serves as benchmark for the accurate modelling of saline-infused RFA.
[Display omitted]
Saline-infused radiofrequency ablation (RFA) is a thermal ablation technique that combines saline infusion and Joule heating to destroy cancer tissues. During treatment, the intense heat generated can cause water from the infused saline and inside the tissue to vaporise. Conventionally, the effects of vaporisation have been modelled by adopting the apparent heat capacity method. However, this approach does not account for the loss of water content during vaporisation, which raises questions on its accuracy, primarily because of the large water content present during saline-infused RFA. To address this, the present study proposes an alternative approach to model vaporisation effects during saline-infused RFA. The approach adopts and modifies the water fraction method to account for the effects of vaporisation, condensation and diffusion of water inside the tissue during saline-infused RFA. The framework was compared against the commonly used apparent heat capacity method through numerical simulations carried out on 3D finite element models of the liver. Results indicated that unlike condensation, the role of diffusion of water during saline-infused RFA was not as significant as condensation, where the latter was found to affect the ablation process. With the water fraction method, there was a trend of exponential decrease in tissue electrical conductivity with time, which ultimately led to the prediction of smaller coagulation volume than that of the apparent heat capacity method. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2022.123062 |