Loading…
Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage
•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various t...
Saved in:
Published in: | International journal of heat and mass transfer 2023-06, Vol.206, p.123944, Article 123944 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63 |
container_end_page | |
container_issue | |
container_start_page | 123944 |
container_title | International journal of heat and mass transfer |
container_volume | 206 |
creator | Tian, Yang Liu, Xianglei Luo, Qingyang Yao, Haichen Wang, Jianguo Dang, Chunzhuo Lv, Shushan Xu, Qiao Li, Jiawei Zhang, Li Zhao, Hongyu Xuan, Yimin |
description | •Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate.
The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2023.123944 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931023000996</els_id><sourcerecordid>S0017931023000996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjdeIdqOKpSl0Aa8sdj6lDmkS2Qerfk6js2LCZ0ehKR3cOIdecLTjj6qZZhGaHNu9tSjnaLnmMC8GEXHAhdVmekBmvK10IXutTMmOMV4WWnJ2Ti5Sa6WSlmpHNK1r6FWEXOpo-scXcd0Xo0hAiOppjGNoDHTCG3gWgvrf7NM5IvU2ZtjZjl-lUg6bcR_uBl-TM2zbh1e-ek_eH-7fVU7HePD6v7tYFyFLkQmgpEN22rkFVwkG9LSuQqFXlPAiHEp1ioEFKkKyEpVKgt8hUjX5ptVdyTm6PXIh9ShG9GWLY23gwnJlJkGnMX0FmEmSOgkbEyxGBY8_vMKYJAnaAbvwdsnF9-D_sB9Irfdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</creator><creatorcontrib>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</creatorcontrib><description>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate.
The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2023.123944</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Effective thermal conductivity ; Metal foam ; Phase change material ; Thermal energy storage ; Triply periodic minimal surfaces</subject><ispartof>International journal of heat and mass transfer, 2023-06, Vol.206, p.123944, Article 123944</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</citedby><cites>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</cites><orcidid>0000-0001-5647-5206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Yao, Haichen</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Lv, Shushan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><title>International journal of heat and mass transfer</title><description>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate.
The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</description><subject>Effective thermal conductivity</subject><subject>Metal foam</subject><subject>Phase change material</subject><subject>Thermal energy storage</subject><subject>Triply periodic minimal surfaces</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjdeIdqOKpSl0Aa8sdj6lDmkS2Qerfk6js2LCZ0ehKR3cOIdecLTjj6qZZhGaHNu9tSjnaLnmMC8GEXHAhdVmekBmvK10IXutTMmOMV4WWnJ2Ti5Sa6WSlmpHNK1r6FWEXOpo-scXcd0Xo0hAiOppjGNoDHTCG3gWgvrf7NM5IvU2ZtjZjl-lUg6bcR_uBl-TM2zbh1e-ek_eH-7fVU7HePD6v7tYFyFLkQmgpEN22rkFVwkG9LSuQqFXlPAiHEp1ioEFKkKyEpVKgt8hUjX5ptVdyTm6PXIh9ShG9GWLY23gwnJlJkGnMX0FmEmSOgkbEyxGBY8_vMKYJAnaAbvwdsnF9-D_sB9Irfdc</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Tian, Yang</creator><creator>Liu, Xianglei</creator><creator>Luo, Qingyang</creator><creator>Yao, Haichen</creator><creator>Wang, Jianguo</creator><creator>Dang, Chunzhuo</creator><creator>Lv, Shushan</creator><creator>Xu, Qiao</creator><creator>Li, Jiawei</creator><creator>Zhang, Li</creator><creator>Zhao, Hongyu</creator><creator>Xuan, Yimin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid></search><sort><creationdate>20230601</creationdate><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><author>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effective thermal conductivity</topic><topic>Metal foam</topic><topic>Phase change material</topic><topic>Thermal energy storage</topic><topic>Triply periodic minimal surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Yao, Haichen</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Lv, Shushan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yang</au><au>Liu, Xianglei</au><au>Luo, Qingyang</au><au>Yao, Haichen</au><au>Wang, Jianguo</au><au>Dang, Chunzhuo</au><au>Lv, Shushan</au><au>Xu, Qiao</au><au>Li, Jiawei</au><au>Zhang, Li</au><au>Zhao, Hongyu</au><au>Xuan, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>206</volume><spage>123944</spage><pages>123944-</pages><artnum>123944</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate.
The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2023.123944</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2023-06, Vol.206, p.123944, Article 123944 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Effective thermal conductivity Metal foam Phase change material Thermal energy storage Triply periodic minimal surfaces |
title | Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20urchin%20skeleton-inspired%20triply%20periodic%20foams%20for%20fast%20latent%20heat%20storage&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Tian,%20Yang&rft.date=2023-06-01&rft.volume=206&rft.spage=123944&rft.pages=123944-&rft.artnum=123944&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2023.123944&rft_dat=%3Celsevier_cross%3ES0017931023000996%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |