Loading…

Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage

•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2023-06, Vol.206, p.123944, Article 123944
Main Authors: Tian, Yang, Liu, Xianglei, Luo, Qingyang, Yao, Haichen, Wang, Jianguo, Dang, Chunzhuo, Lv, Shushan, Xu, Qiao, Li, Jiawei, Zhang, Li, Zhao, Hongyu, Xuan, Yimin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63
cites cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63
container_end_page
container_issue
container_start_page 123944
container_title International journal of heat and mass transfer
container_volume 206
creator Tian, Yang
Liu, Xianglei
Luo, Qingyang
Yao, Haichen
Wang, Jianguo
Dang, Chunzhuo
Lv, Shushan
Xu, Qiao
Li, Jiawei
Zhang, Li
Zhao, Hongyu
Xuan, Yimin
description •Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.
doi_str_mv 10.1016/j.ijheatmasstransfer.2023.123944
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931023000996</els_id><sourcerecordid>S0017931023000996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjdeIdqOKpSl0Aa8sdj6lDmkS2Qerfk6js2LCZ0ehKR3cOIdecLTjj6qZZhGaHNu9tSjnaLnmMC8GEXHAhdVmekBmvK10IXutTMmOMV4WWnJ2Ti5Sa6WSlmpHNK1r6FWEXOpo-scXcd0Xo0hAiOppjGNoDHTCG3gWgvrf7NM5IvU2ZtjZjl-lUg6bcR_uBl-TM2zbh1e-ek_eH-7fVU7HePD6v7tYFyFLkQmgpEN22rkFVwkG9LSuQqFXlPAiHEp1ioEFKkKyEpVKgt8hUjX5ptVdyTm6PXIh9ShG9GWLY23gwnJlJkGnMX0FmEmSOgkbEyxGBY8_vMKYJAnaAbvwdsnF9-D_sB9Irfdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</creator><creatorcontrib>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</creatorcontrib><description>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2023.123944</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Effective thermal conductivity ; Metal foam ; Phase change material ; Thermal energy storage ; Triply periodic minimal surfaces</subject><ispartof>International journal of heat and mass transfer, 2023-06, Vol.206, p.123944, Article 123944</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</citedby><cites>FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</cites><orcidid>0000-0001-5647-5206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Yao, Haichen</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Lv, Shushan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><title>International journal of heat and mass transfer</title><description>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</description><subject>Effective thermal conductivity</subject><subject>Metal foam</subject><subject>Phase change material</subject><subject>Thermal energy storage</subject><subject>Triply periodic minimal surfaces</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD16ySfEjdeIdqOKpSl0Aa8sdj6lDmkS2Qerfk6js2LCZ0ehKR3cOIdecLTjj6qZZhGaHNu9tSjnaLnmMC8GEXHAhdVmekBmvK10IXutTMmOMV4WWnJ2Ti5Sa6WSlmpHNK1r6FWEXOpo-scXcd0Xo0hAiOppjGNoDHTCG3gWgvrf7NM5IvU2ZtjZjl-lUg6bcR_uBl-TM2zbh1e-ek_eH-7fVU7HePD6v7tYFyFLkQmgpEN22rkFVwkG9LSuQqFXlPAiHEp1ioEFKkKyEpVKgt8hUjX5ptVdyTm6PXIh9ShG9GWLY23gwnJlJkGnMX0FmEmSOgkbEyxGBY8_vMKYJAnaAbvwdsnF9-D_sB9Irfdc</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Tian, Yang</creator><creator>Liu, Xianglei</creator><creator>Luo, Qingyang</creator><creator>Yao, Haichen</creator><creator>Wang, Jianguo</creator><creator>Dang, Chunzhuo</creator><creator>Lv, Shushan</creator><creator>Xu, Qiao</creator><creator>Li, Jiawei</creator><creator>Zhang, Li</creator><creator>Zhao, Hongyu</creator><creator>Xuan, Yimin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid></search><sort><creationdate>20230601</creationdate><title>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</title><author>Tian, Yang ; Liu, Xianglei ; Luo, Qingyang ; Yao, Haichen ; Wang, Jianguo ; Dang, Chunzhuo ; Lv, Shushan ; Xu, Qiao ; Li, Jiawei ; Zhang, Li ; Zhao, Hongyu ; Xuan, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effective thermal conductivity</topic><topic>Metal foam</topic><topic>Phase change material</topic><topic>Thermal energy storage</topic><topic>Triply periodic minimal surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Yao, Haichen</creatorcontrib><creatorcontrib>Wang, Jianguo</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Lv, Shushan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yang</au><au>Liu, Xianglei</au><au>Luo, Qingyang</au><au>Yao, Haichen</au><au>Wang, Jianguo</au><au>Dang, Chunzhuo</au><au>Lv, Shushan</au><au>Xu, Qiao</au><au>Li, Jiawei</au><au>Zhang, Li</au><au>Zhao, Hongyu</au><au>Xuan, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>206</volume><spage>123944</spage><pages>123944-</pages><artnum>123944</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Sea urchin skeleton-inspired TPMS based MFPCM is prepared for fast LHS.•The mechanism for enhancing the effective thermal conductivity can be explained.•MFPCM with the positive gradient in porosity has the fastest melting rate. The latent heat storage technology has been widely applied in various thermal management fields, but its extensive deployment is limited due to the poor thermal conductivity of phase change material. Here, inspired by the microstructure and functions of sea urchin skeleton, four different metal foam skeletons based on triply periodic minimal surface (TPMS) are introduced to enhance latent heat thermal energy storage performances, which are evaluated by both experiment and numerical simulation. The metal foam-PCM (MFPCM) based on the Primitive structure has the fastest thermal energy storage rate with melting time prominently reduced by 20% compared to the traditional structure (Lattice). The underlying mechanism can be attributed to a more continuous and compact internal structure of TPMS compared with traditional MFPCM by thermal resistance analysis. In addition, the effect of gradient porosity is investigated as well, and the positive gradient in porosity has the fastest melting rate. The present study provides a new idea to design high-performance MFPCM and promotes the application of bionics in accelerating latent heat thermal energy storage.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2023.123944</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2023-06, Vol.206, p.123944, Article 123944
issn 0017-9310
1879-2189
language eng
recordid cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944
source ScienceDirect Freedom Collection 2022-2024
subjects Effective thermal conductivity
Metal foam
Phase change material
Thermal energy storage
Triply periodic minimal surfaces
title Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20urchin%20skeleton-inspired%20triply%20periodic%20foams%20for%20fast%20latent%20heat%20storage&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Tian,%20Yang&rft.date=2023-06-01&rft.volume=206&rft.spage=123944&rft.pages=123944-&rft.artnum=123944&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2023.123944&rft_dat=%3Celsevier_cross%3ES0017931023000996%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-2932eedb88c672dc8b47c3e967dfc2de3ed60c9c33c304c566c9be068ef5a9f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true