Loading…

Topology optimization of controllable porous microstructure with maximum thermal conductivity

•Optimal design of various periodic unit cells aiming at high thermal conductivity.•Schemes to modulate porous microstructure based on topology optimization.•Computational and experimental validation of effective thermal conductivity with error less than 10 %. Porous structures are lightweight and t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2024-03, Vol.220, p.124990, Article 124990
Main Authors: Feng, Guangpeng, Pan, Guanfu, Feng, Yanhui, Zhang, Xinxin, Qiu, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413
cites cdi_FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413
container_end_page
container_issue
container_start_page 124990
container_title International journal of heat and mass transfer
container_volume 220
creator Feng, Guangpeng
Pan, Guanfu
Feng, Yanhui
Zhang, Xinxin
Qiu, Lin
description •Optimal design of various periodic unit cells aiming at high thermal conductivity.•Schemes to modulate porous microstructure based on topology optimization.•Computational and experimental validation of effective thermal conductivity with error less than 10 %. Porous structures are lightweight and thus possess tailorable thermophysical properties through topological design. A multi-constraint topology optimization scheme is developed for designing 2D periodic lattice material with controllable porosity and optimal thermal conductivity. The porosity, pore size and specific surface area are modulated by imposing local density constraints, and thus the structure-determined thermal conductivity can be systematically investigated. The isotropic porous structures after optimization show effective thermal conductivity close to the Hashin-Shtrikman theoretical bound. The specific surface area of base cell is enlarged with imposing local density constraint. In addition, microstructure with anisotropic thermal conductivity can be also obtained. The samples of lattice structure are additively manufactured via selective laser melting, and the thermal conductivities are experimentally validated with deviation within 10 %. The proposed porous structures with targeted porosity have potential application in skeleton embedded with phase change materials.
doi_str_mv 10.1016/j.ijheatmasstransfer.2023.124990
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_124990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931023011353</els_id><sourcerecordid>S0017931023011353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-hxy9dJ2ksWlvyuIngpf1KCFNUjelaUqSrq6_3pb15sXTMLzMMy8PQpcEVgRIcdWubLs1MjkZYwqyj40JKwo0XxHKqgqO0IKUvMooKatjtAAgPKtyAqfoLMZ2XoEVC_S-8YPv_Mce-yFZZ79lsr7HvsHK9yn4rpN1Z_Dggx8jdlYFP70bVRqDwZ82bbGTX9aNDqetCU52852ecruzaX-OThrZRXPxO5fo7f5us37MXl4fnta3L5nKGU0ZrRogtYS8II2uoSyvGYCudSUZBZCmybWuCdey4ExSwlWtuOKsKLQxmjOSL9HNgTvXi8E0YgjWybAXBMSsS7Tiry4x6xIHXRPi-YAwU8-dndKorOmV0TYYlYT29v-wH4bVhIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topology optimization of controllable porous microstructure with maximum thermal conductivity</title><source>ScienceDirect Freedom Collection</source><creator>Feng, Guangpeng ; Pan, Guanfu ; Feng, Yanhui ; Zhang, Xinxin ; Qiu, Lin</creator><creatorcontrib>Feng, Guangpeng ; Pan, Guanfu ; Feng, Yanhui ; Zhang, Xinxin ; Qiu, Lin</creatorcontrib><description>•Optimal design of various periodic unit cells aiming at high thermal conductivity.•Schemes to modulate porous microstructure based on topology optimization.•Computational and experimental validation of effective thermal conductivity with error less than 10 %. Porous structures are lightweight and thus possess tailorable thermophysical properties through topological design. A multi-constraint topology optimization scheme is developed for designing 2D periodic lattice material with controllable porosity and optimal thermal conductivity. The porosity, pore size and specific surface area are modulated by imposing local density constraints, and thus the structure-determined thermal conductivity can be systematically investigated. The isotropic porous structures after optimization show effective thermal conductivity close to the Hashin-Shtrikman theoretical bound. The specific surface area of base cell is enlarged with imposing local density constraint. In addition, microstructure with anisotropic thermal conductivity can be also obtained. The samples of lattice structure are additively manufactured via selective laser melting, and the thermal conductivities are experimentally validated with deviation within 10 %. The proposed porous structures with targeted porosity have potential application in skeleton embedded with phase change materials.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2023.124990</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>3D printing ; Microstructure ; Thermal conductivity ; Topological optimization</subject><ispartof>International journal of heat and mass transfer, 2024-03, Vol.220, p.124990, Article 124990</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413</citedby><cites>FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413</cites><orcidid>0000-0003-3389-3741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Feng, Guangpeng</creatorcontrib><creatorcontrib>Pan, Guanfu</creatorcontrib><creatorcontrib>Feng, Yanhui</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><title>Topology optimization of controllable porous microstructure with maximum thermal conductivity</title><title>International journal of heat and mass transfer</title><description>•Optimal design of various periodic unit cells aiming at high thermal conductivity.•Schemes to modulate porous microstructure based on topology optimization.•Computational and experimental validation of effective thermal conductivity with error less than 10 %. Porous structures are lightweight and thus possess tailorable thermophysical properties through topological design. A multi-constraint topology optimization scheme is developed for designing 2D periodic lattice material with controllable porosity and optimal thermal conductivity. The porosity, pore size and specific surface area are modulated by imposing local density constraints, and thus the structure-determined thermal conductivity can be systematically investigated. The isotropic porous structures after optimization show effective thermal conductivity close to the Hashin-Shtrikman theoretical bound. The specific surface area of base cell is enlarged with imposing local density constraint. In addition, microstructure with anisotropic thermal conductivity can be also obtained. The samples of lattice structure are additively manufactured via selective laser melting, and the thermal conductivities are experimentally validated with deviation within 10 %. The proposed porous structures with targeted porosity have potential application in skeleton embedded with phase change materials.</description><subject>3D printing</subject><subject>Microstructure</subject><subject>Thermal conductivity</subject><subject>Topological optimization</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-hxy9dJ2ksWlvyuIngpf1KCFNUjelaUqSrq6_3pb15sXTMLzMMy8PQpcEVgRIcdWubLs1MjkZYwqyj40JKwo0XxHKqgqO0IKUvMooKatjtAAgPKtyAqfoLMZ2XoEVC_S-8YPv_Mce-yFZZ79lsr7HvsHK9yn4rpN1Z_Dggx8jdlYFP70bVRqDwZ82bbGTX9aNDqetCU52852ecruzaX-OThrZRXPxO5fo7f5us37MXl4fnta3L5nKGU0ZrRogtYS8II2uoSyvGYCudSUZBZCmybWuCdey4ExSwlWtuOKsKLQxmjOSL9HNgTvXi8E0YgjWybAXBMSsS7Tiry4x6xIHXRPi-YAwU8-dndKorOmV0TYYlYT29v-wH4bVhIk</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Feng, Guangpeng</creator><creator>Pan, Guanfu</creator><creator>Feng, Yanhui</creator><creator>Zhang, Xinxin</creator><creator>Qiu, Lin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3389-3741</orcidid></search><sort><creationdate>202403</creationdate><title>Topology optimization of controllable porous microstructure with maximum thermal conductivity</title><author>Feng, Guangpeng ; Pan, Guanfu ; Feng, Yanhui ; Zhang, Xinxin ; Qiu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Microstructure</topic><topic>Thermal conductivity</topic><topic>Topological optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Guangpeng</creatorcontrib><creatorcontrib>Pan, Guanfu</creatorcontrib><creatorcontrib>Feng, Yanhui</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Guangpeng</au><au>Pan, Guanfu</au><au>Feng, Yanhui</au><au>Zhang, Xinxin</au><au>Qiu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of controllable porous microstructure with maximum thermal conductivity</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2024-03</date><risdate>2024</risdate><volume>220</volume><spage>124990</spage><pages>124990-</pages><artnum>124990</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Optimal design of various periodic unit cells aiming at high thermal conductivity.•Schemes to modulate porous microstructure based on topology optimization.•Computational and experimental validation of effective thermal conductivity with error less than 10 %. Porous structures are lightweight and thus possess tailorable thermophysical properties through topological design. A multi-constraint topology optimization scheme is developed for designing 2D periodic lattice material with controllable porosity and optimal thermal conductivity. The porosity, pore size and specific surface area are modulated by imposing local density constraints, and thus the structure-determined thermal conductivity can be systematically investigated. The isotropic porous structures after optimization show effective thermal conductivity close to the Hashin-Shtrikman theoretical bound. The specific surface area of base cell is enlarged with imposing local density constraint. In addition, microstructure with anisotropic thermal conductivity can be also obtained. The samples of lattice structure are additively manufactured via selective laser melting, and the thermal conductivities are experimentally validated with deviation within 10 %. The proposed porous structures with targeted porosity have potential application in skeleton embedded with phase change materials.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2023.124990</doi><orcidid>https://orcid.org/0000-0003-3389-3741</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2024-03, Vol.220, p.124990, Article 124990
issn 0017-9310
1879-2189
language eng
recordid cdi_crossref_primary_10_1016_j_ijheatmasstransfer_2023_124990
source ScienceDirect Freedom Collection
subjects 3D printing
Microstructure
Thermal conductivity
Topological optimization
title Topology optimization of controllable porous microstructure with maximum thermal conductivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20controllable%20porous%20microstructure%20with%20maximum%20thermal%20conductivity&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Feng,%20Guangpeng&rft.date=2024-03&rft.volume=220&rft.spage=124990&rft.pages=124990-&rft.artnum=124990&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2023.124990&rft_dat=%3Celsevier_cross%3ES0017931023011353%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-29f01ba0361fdb0885400dbd9a4200aef3ddb17da674a217cbc7c7466deed7413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true