Loading…

Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors

Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostruct...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2014-05, Vol.39 (15), p.8169-8179
Main Authors: Esfandiar, Ali, Irajizad, Azam, Akhavan, Omid, Ghasemi, Shahnaz, Gholami, Mohammad Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity was reduced to half, due to lower surface area of the irregular morphology in comparison with the ribbon-like morphology. The Pd–WO3/PRGO films showed an optimum sensitivity (∼10 folds better than the sensitivity of Pd–WO3/GO), and a fast response and recovery time (
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2014.03.117