Loading…
Microbial electrolysis cell powered by an aluminum-air battery for hydrogen generation, in-situ coagulant production and wastewater treatment
Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matters, but an additional voltage is needed to overcome the thermodynamic barrier of the reaction. A combined system of MEC and the aluminum-air battery (Al-air battery) was designed for hydroge...
Saved in:
Published in: | International journal of hydrogen energy 2018-04, Vol.43 (16), p.7764-7772 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matters, but an additional voltage is needed to overcome the thermodynamic barrier of the reaction. A combined system of MEC and the aluminum-air battery (Al-air battery) was designed for hydrogen generation, coagulant production and operated in an energy self-sufficient mode. The Al-air battery (28 mL) produced a voltage ranged from 0.58 V to 0.80 V, which powered an MEC (28 mL) to produce hydrogen. The hydrogen production rate reached 0.19 ± 0.01 m3 H2/m3/d and 14.5 ± 0.9 mmol H2/g COD. The total COD removal rate was 85 ± 1%, of which MEC obtained 75 ± 1% COD removal and 10 ± 1% COD removal was achieved by in-situ coagulating process. The microorganisms removal of MEC effluent was 97 ± 2% through ex-situ coagulating process. These results showed that the Al-air battery-MEC system can be operated in energy self-sufficient mode and recovered energy from wastewater with high quality effluent.
•An MEC-Al-air battery combined system was designed for hydrogen generation.•The Al-air battery provided energy for MEC and reduced the system energy consumption.•The effluent quality was improved by coagulating process with Al-air battery. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2018.02.170 |