Loading…

Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide

Increasing the separation efficiency and transfer rate of photogenerated charges is the dominant factor for improving photocatalytic activity. Herein, we successfully prepared semi-crystalline WP (SC-WP) with good optical properties and as a cocatalyst to modify CdS nanorods (CdS NRs) to construct S...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2019-10, Vol.44 (49), p.26848-26862
Main Authors: Jin, Zhiliang, Jian, Qiyan, Guo, Qingjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing the separation efficiency and transfer rate of photogenerated charges is the dominant factor for improving photocatalytic activity. Herein, we successfully prepared semi-crystalline WP (SC-WP) with good optical properties and as a cocatalyst to modify CdS nanorods (CdS NRs) to construct SC-WP/CdS (PD) composite catalyst by simple electrostatic self-assembly method for photocatalytic hydrogen evolution. Two high-efficiency and stable photocatalytic hydrogen evolution systems were constructed with 1.0 M ammonium sulfite solution and 10 vol% lactic acid solution as sacrificial agents, respectively. Surprisingly, the maximum photocatalytic H2 production rate of 15446.21 μmol h−1 g−1 is obtained over 10PD composite, which is 10.58 times greater than that of pure CdS. The improved photocatalytic activity can be attributed to the fact that the SC-WP nanoparticles provides a large number of exposed active sites on the surface of CdS for hydrogen evolution reaction, which can efficiently capture photogenerated electrons from CdS nanorods and promotes the transport and separation of light-induced charges. And the introduction of SC-WP nanoparticles with excellent optical properties can efficiently improve the visible light absorption range and the utilization rate of the absorbed light of the PD composite. In addition, the SC-WP nanoparticles show semi-crystalline state, which is also conducive to enhancing the photocatalytic activity. •The tungsten phosphide (SC-WP) has a unique semi-crystalline structure and excellent optical properties.•The SC-WP cocatalyst improved the visible light absorption ability and the utilization of absorbed light.•Highly efficient and stable photocatalytic hydrogen evolution systems were constructed.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2019.08.080